作為一位無私奉獻的人民教師,總歸要編寫教案,借助教案可以有效提升自己的教學能力。既然教案這么重要,那到底該怎么寫一篇優質的教案呢?以下我給大家整理了一些優質的教案范文,希望對大家能夠有所幫助。
八年級數學教案人教版篇一
平行四邊形定義:有兩組對邊分別平行的四邊形叫做平行四邊形。
平行四邊形的性質:平行四邊形的對邊相等;
平行四邊形的對角相等。
平行四邊形的對角線互相平分。
平行四邊形的判定
1.兩組對邊分別相等的四邊形是平行四邊形
2.對角線互相平分的四邊形是平行四邊形;
3.兩組對角分別相等的四邊形是平行四邊形;
4.一組對邊平行且相等的四邊形是平行四邊形。
三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。
直角三角形斜邊上的中線等于斜邊的一半。
矩形的定義:有一個角是直角的平行四邊形。
矩形的性質:矩形的四個角都是直角;
矩形的對角線平分且相等。
八年級數學教案人教版篇二
1.(跨學科綜合 題)若把x克食鹽溶入b克水中,從其中取出m克食鹽溶液,其中含純鹽________.
2.(數學與生活)李麗從家到學校的路程為s,無風時她以平均a米/秒的速度騎車,便能按時到達,當風速為b米/秒時,她若頂 風按時到校,請用代數式表示她必須提前_______出發.
3.(數學與生產)永信瓶蓋廠加工一批瓶蓋,甲組與乙組合作需要a天完成,若甲組單獨完成需要b天,乙 組單獨完 成需_______天.
八年級數學教案人教版篇三
一、教學目標:理解分式乘方的運算法則,熟練地進行分式乘方的運算。
二、重點、難點
1、重點:熟練地進行分式乘方的運算。
2、難點:熟練地進行分式乘、除、乘方的混合運算。
3、認知難點與突破方法
順其自然地推導可得:
= = = ,即 = 。 (n為正整數)
歸納出分式乘方的法則:分式乘方要把分子、分母分別乘方。
三、例、習題的意圖分析
1、 p17例5第(1)題是分式的乘方運算,它與整式的乘方一樣應先判
斷乘方的結果的符號,在分別把分子、分母乘方。第(2)題是分式的乘除與乘方的混合運算,應對學生強調運算順序:先做乘方,再做乘除。.
2、教材p17例5中象第(1)題這樣的分式的乘方運算只有一題,對于初學者來說,練習的量顯然少了些,故教師應作適當的補充練習。同樣象第(2)題這樣的分式的乘除與乘方的混合運算,也應相應的增加幾題為好。
分式的乘除與乘方的混合運算是學生學習中重點,也是難點,故補充例題,強調運算順序,不要盲目地跳步計算,提高正確率,突破這個難點。
四、課堂引入
計算下列各題:
(1) = =( ) (2) = =( )
(3) = =( )
[提問]由以上計算的結果你能推出 (n為正整數)的結果嗎?
五、例題講解
(p17)例5.計算
[分析]第(1)題是分式的乘方運算,它與整式的乘方一樣應先判斷乘方的結果的符號,再分別把分子、分母乘方。第(2)題是分式的乘除與乘方的混合運算,應對學生強調運算順序:先做乘方,再做乘除。
六、隨堂練習
1、判斷下列各式是否成立,并改正。
(1) = (2) =
(3) = (4) =
2、計算
(1) (2) (3)
(4) 5)
(6)
七、課后練習
計算
(1) (2)
(3) (4)
八、答案:
六、1. (1)不成立, = (2)不成立, =
(3)不成立, = (4)不成立, =
2、 (1) (2) (3) (4)
(5) (6)
七、(1) (2) (3) (4)
八年級數學教案人教版篇四
《圖形的位似》這節課內容抽象而且學生以前沒接觸過,對學生來說接受起來難度很大,因此在教學的過程中,首先由手影這種學生較熟悉的形式讓學生感受這種位置關系,然后通過動手操作的形式進一步探究位似圖形的相關性質。在教學的過程中,為了便于學生理解位似圖形的特征,我在設計中特別注意讓學生通過動手操作、猜想、試驗等方式獲得感性認識,然后通過歸納總結上升到理性認識,將形象與抽象有機結合,形成對位似圖形的認識。探索知識是本節的重點,設計這一環節,通過學生的做、議、讀、想、試等環節來完成,把學習的主動權充分放給學生,每一環節及時歸納總結,使學生學有所獲,探索創新。
但是,這節課也存在很多不足之處:
1、學生動手操作、探究位似圖形的過程都很順利,但是很多小組在總結位似圖形的性質時出項了語言表達的困難。
2、學生對于“每組對應點”認識還是不夠,導致在判斷位似圖形時出現問題。
3、評價形式過于單調。一直是教師“很好”“太棒了”之類的評價,不能更好的調動學生的積極性。
4、小組合作時個別學生沒有真正動起來。
5、沒有讓學生自己感受當位似圖形不同時位似中心在位似圖形的不同位置這一動態特點。
6、學生證明位似圖形時證明過程還是不夠嚴謹。
7、缺少了位似圖形在生活中的應用。
改進措施:
1、通過小組合作交流的方式不斷提高學生語言表達能力和邏輯思維能力。
2、強調“每組對應點”就是“所有的對應點”,在圖上任意取幾對對應點,通過連線,也經過位似中心,通過這樣的動手實踐,讓學生印象更深刻。
3、通過各種途徑評價學生,讓自己的評價活潑多樣。譬如:鼓勵性眼神、肢體語言、同學們的掌聲、定量評價、獎懲措施等等。
4、做好小組長的培訓工作,讓他們在小組中起到領導和協調的作用,抓住整個小組的節奏,讓每個學生都參與進來,同時,多舉行小組捆綁評價的活動,讓后進的同學為了不拖后腿而不得不參與進來。
5、加強幾何畫板的學習和利用。信息技術與數學教學有機整合,有利于學生主動參與、樂于探究、勤于動手、動腦,體現了開放式的教育模式,開闊了學生的視野,推動了數學課堂現代化的發展。在這節課中,如果添加幾何畫板,那么位似中心和位似圖形的五種位置關系就很形象的展現在我們面前。
6、加強學生幾何題證明的條理性、嚴謹性的訓練。培養學生的邏輯思維能力和語言的組織能力。
7、讓學生在課下自己尋找我們生活中位似圖形的影子,將數學和生活緊密聯系起來。
在今后的教學中,我將牢記這些不足之處,不斷改進,不斷修煉自己,讓自己的教學更進步,更成熟。
今天有關今天小編就為大家精心整理了一篇有關英語口語的相關內容,以便幫助大家更好的復習。
八年級數學教案人教版篇五
一、教學目標:熟練地進行分式乘除法的混合運算。
二、重點、難點
1、重點:熟練地進行分式乘除法的混合運算。
2、難點:熟練地進行分式乘除法的混合運算。
3、認知難點與突破方法:
緊緊抓住分式乘除法的混合運算先統一成為乘法運算這一點,然后利用上節課分式乘法運算的基礎,達到熟練地進行分式乘除法的混合運算的目的。課堂練習以學生自己討論為主,教師可組織學生對所做的題目作自我評價,關鍵是點撥運算符號問題、變號法則。
三、例、習題的意圖分析
1、 p17頁例4是分式乘除法的混合運算。 分式乘除法的混合運算先把除法統一成乘法運算,再把分子、分母中能因式分解的多項式分解因式,最后進行約分,注意最后的結果要是最簡分式或整式。
教材p17例4只把運算統一乘法,而沒有把25x2-9分解因式,就得出了最后的結果,教師在見解是不要跳步太快,以免學習有困難的學生理解不了,造成新的疑點。
2, p17頁例4中沒有涉及到符號問題,可運算符號問題、變號法則是學生學習中重點,也是難點,故補充例題,突破符號問題。
四、課堂引入
計算
(1) (2)
五、例題講解
(p17)例4.計算
[分析] 是分式乘除法的混合運算。 分式乘除法的混合運算先統一成為乘法運算,再把分子、分母中能因式分解的多項式分解因式,最后進行約分,注意最后的計算結果要是最簡的。
(補充)例。計算
(1)
= (先把除法統一成乘法運算)
= (判斷運算的符號)
= (約分到最簡分式)
(2)
= (先把除法統一成乘法運算)
= (分子、分母中的多項式分解因式)
=
=
六、隨堂練習
計算
(1) (2)
(3) (4)
七、課后練習
計算
(1) (2)
(3) (4)
八、答案:
六。(1) (2) (3) (4)-y
七。 (1) (2) (3) (4)
八年級數學教案人教版篇六
上節課我們認識了什么是二次根式,那么二次根式有什么性質呢?本節課我們一起來學習。
二、展示目標,自主學習:
自學指導:認真閱讀課本第3頁——4頁內容,完成下列任務:
1、請比較 與0的大小,你得到的結論是:________________________。
2、完成3頁“探究”中的填空,你得到的結論是____________________。
3、看例2是怎樣利用性質進行計算的。
4、完成4頁“探究”中的填空,你得到的結論是:____________________。
5 、看懂例3,有困難可與同伴交流或問老師。
八年級數學教案人教版篇七
1.因式分解:把一個多項式化為幾個整式的積的形式,叫做把這個多項式因式分解;注意:因式分解與乘法是相反的兩個轉化。
2.因式分解的方法:常用“提取公因式法”、“公式法”、“分組分解法”、“十字相乘法”。
3.公因式的確定:系數的公約數?相同因式的最低次冪。
注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3。
4.因式分解的公式:
(1)平方差公式:a2-b2=(a+b)(a-b);
(2)完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.
5.因式分解的注意事項:
(1)選擇因式分解方法的一般次序是:一提取、二公式、三分組、四十字;
(2)使用因式分解公式時要特別注意公式中的字母都具有整體性;
(3)因式分解的最后結果要求分解到每一個因式都不能分解為止;
(4)因式分解的最后結果要求每一個因式的首項符號為正;
(5)因式分解的最后結果要求加以整理;
(6)因式分解的最后結果要求相同因式寫成乘方的形式。
八年級數學教案人教版篇八
(1)知識結構
(2)重點、難點分析
本節內容的重點是線段垂直平分線定理及其逆定理。定理反映了線段垂直平分線的性質,是證明兩條線段相等的依據;逆定理反映了線段垂直平分線的判定,是證明某點在某條直線上及一條直線是已知線段的垂直平分線的依據。
本節內容的難點是定理及逆定理的關系。垂直平分線定理和其逆定理,題設與結論正好相反。學生在應用它們的時候,容易混淆,幫助學生認識定理及其逆定理的區別,這是本節的難點。
2、 教法建議
本節課教學模式主要采用“學生主體性學習”的教學模式。提出問題讓學生想,設計問題讓學生做,錯誤原因讓學生說,方法與規律讓學生歸納。教師的作用在于組織、點撥、引導,促進學生主動探索,積極思考,大膽想象,總結規律,充分發揮學生的主體作用,讓學生真正成為教學活動的主人。具體說明如下:
(1)參與探索發現,領略知識形成過程
學生前面,學習過線段垂直平分線的概念,這樣由復習概念入手,順其自然提出問題:在垂直平分線上任取一點p,它到線段兩端的距離有何關系?學生會很容易得出“相等”。然后學生完成證明,找一名學生的證明過程,進行投影總結。最后,由學生將上述問題,用文字的形式進行歸納,即得線段垂直平分線定理。這樣讓學生親自動手實踐,積極參與發現,激發了學生的認識沖突,使學生克服思維和探求的惰性,獲得鍛煉機會,對定理的產生過程,真正做到心領神會。
(2)采用“類比”的學習方法,獲取逆定理
線段垂直平分線的定理及逆定理的證明都比較簡單,學生學習一般沒有什么困難,這一節的難點仍然的定理及逆定理的關系,為了很好的突破這一難點,教學時采用與角的平分線的性質定理和逆定理對照,類比的方法進行教學,使學生進一步認識這兩個定理的區別和聯系。
(3) 通過問題的解決,讓學生學會從不同角度分析問題、解決問題;讓學生學會引申、變更問題,以培養學生發現問題、提出問題的創造性能力。
八年級數學教案人教版篇九
原式變形后,利用完全平方公式變形,計算即可得到結果.
此題考查了因式分解的應用,熟練掌握平方差公式及完全平方公式是解本題的關鍵.
22. 已知等式配方后,利用非負數的性質求出a與b的值,即可確定出三角形周長.
此題考查了因式分解的應用,熟練掌握完全平方公式是解本題的關鍵.
23. 原式利用平方差公式分解得到結果,即可做出判斷.
此題考查了因式分解的應用,熟練掌握平方差公式是解本題的關鍵.
24. 本題考查了分式的化簡求值,解答此題的關鍵是把分式化到最簡,然后代值計算.先將分式的分母分解因式,再約分,然后將已知 變形為 代入原式即可求解.
八年級數學教案人教版篇十
教法:
2、講練結合法: 在例題教學中,引導學生閱讀,與平方根進行類比,獲得解決問題的方法后配以精講,并進行分層練習,培養學生的閱讀習慣和規范的解題格式。
學法:
1、類比的方法通過觀察、類比,使學生感悟二次根式的模型,形成有效的學習策略。
2、閱讀的方法讓學生閱讀教材及材料,體驗一定的閱讀方法,提高閱讀能力。
3、分組討論法將自己的意見在小組內交換,達到取長補短,體驗學習活動中的交流與合作。
4、練習法采用不同的練習法,鞏固所學的知識;利用教材進行自檢,小組內進行他檢,提高學生的素質。