作為一名教職工,總歸要編寫教案,教案是教學藍圖,可以有效提高教學效率。優(yōu)秀的教案都具備一些什么特點呢?這里我給大家分享一些最新的教案范文,方便大家學習。
有理數(shù)的乘方教案作業(yè)布置 有理數(shù)的乘方教案教學反思篇一
1、知識目標:利用10的乘方,進行科學記數(shù),會用科學記數(shù)法表示大于10的數(shù).
2、能力目標:會解決與科學記數(shù)法有關的實際問題.
3、情感態(tài)度和價值觀:正確使用科學記數(shù)法表示數(shù),表現(xiàn)出一絲不茍的精神.
會用科學記數(shù)法表示大于10的數(shù).
正確使用科學記數(shù)法表示數(shù).
用乘方的形式,有時可方便地來表示日常生活中遇到的一些較大的數(shù),如:
太陽的半徑約696000千米
富士山可能爆發(fā),這將造成至少25000億日元的損失
光的速度大約是300000000米/秒;
全世界人口數(shù)大約是6100000000.
這樣的大數(shù),讀、寫都不方便,考慮到10的乘方有如下特點:
102 = 100,103 = 1000,104 = 10000,?
一般地,10的n次冪,在1的后面有n個0,這樣就可用10的冪表示一些大數(shù),如,
6100000000=6.1×1000000000=6.1×109.[讀作6.1乘10的9次方(冪)]
像上面這樣把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫做科學記數(shù)法.
科學記數(shù)法也就是把一個數(shù)表示成a×10n的形式,其中1≤a的絕對值<10的數(shù),n的值等于整數(shù)部分的位數(shù)減1.
例1、用科學記數(shù)法記出下列各數(shù):
(1)1000000;(2)57000000;(3)123000000000
解:(1)1000000 = 1×106
(2)57000000 = 5.7×107
(3)123000000000 = 1.23×1011.
用科學記數(shù)法表示一個數(shù)時,首先要確定這個數(shù)的整數(shù)部分的位數(shù).
注意:一個數(shù)的科學記數(shù)法中,10的指數(shù)比原數(shù)的整數(shù)位數(shù)少1,如原數(shù)有6位整數(shù),指數(shù)就是5.說明:在實際生活中有非常大的數(shù),同樣也有非常小的數(shù).本節(jié)課強調的是大數(shù)可以用科學記數(shù)法來表示,實際上非常小的數(shù)也同樣可以用科學記數(shù)法表示,如本章引言中有1納米=109米1,意思是1米是1納米的10億倍,也就是說1納米是1米的十億分一.用表達式表示為1米=109納米,或者1納米=米=米.
1.用科學記數(shù)法記出下列各數(shù).
(1)30060;(2)15400000;(3)123000.
2.下列用科學記數(shù)法記出的數(shù),原來各是什么數(shù)?
(1)2×105;(2)7.12×103;(3)8.5×106.
3.已知長方形的長為7×105mm,寬為5×104mm,求長方形的面積.
4.把199 000 000用科學記數(shù)法寫成1.99×10n3的形式,求n的值.
課堂練習答案
1.(1)3.006×104;(2)1.54×107;(3)1.23×105.
2.(1)100000;(2)7120;(3)8500000.
3.3.5×1010mm.
4.n的值為11.
有理數(shù)的乘方教案作業(yè)布置 有理數(shù)的乘方教案教學反思篇二
1?理解有理數(shù)乘方的概念,掌握有理數(shù)乘方的運算;
2?培養(yǎng)學生的觀察、比較、分析、歸納、概括能力,以及學生的探索精神;
3?滲透分類討論思想?
重點:有理數(shù)乘方的運算?
難點:有理數(shù)乘方運算的符號法則?
在小學我們已經(jīng)學習過aa,記作a2,讀作a的平方(或a的二次方);aaa作a3,讀作a的立方(或a的三次方);那么,aaaa可以記作什么?讀作什么?aaaaa呢?
在小學對于字母a我們只能取正數(shù)?進入中學后,我們學習了有理數(shù),那么a還可以取哪些數(shù)呢?請舉例說明?
1?求n個相同因數(shù)的積的運算叫做乘方?
2?乘方的結果叫做冪,相同的因數(shù)叫做底數(shù),相同因數(shù)的個數(shù)叫做指數(shù)?
一般地,在an中,a取任意有理數(shù),n取正整數(shù)?
應當注意,乘方是一種運算,冪是乘方運算的結果?當an看作a的n次方的結果時,也可以讀作a的n次冪。
3、我們知道,乘方和加、減、乘、除一樣,也是一種運算, 就是表示n個a相乘,所以可以利用有理數(shù)的乘法運算來進行有理數(shù)乘方的運算?
例1 計算:
(1)2, 2, 2,24; (2)-2, 2, 3,(-2)4;
(3)0,02,03,04?
教師指出:2就是21,指數(shù)1通常不寫?讓三個學生在黑板上計算?
引導學生觀察、比較、分析這三組計算題中,底數(shù)、指數(shù)和冪之間有什么關系?
(1)模向觀察
正數(shù)的任何次冪都是正數(shù);負數(shù)的奇次冪是負數(shù),偶次冪是正數(shù);零的任何次冪都是零?
(2)縱向觀察
互為相反數(shù)的兩個數(shù)的奇次冪仍互為相反數(shù),偶次冪相等?
(3)任何一個數(shù)的偶次冪都是什么數(shù)?
任何一個數(shù)的偶次冪都是非負數(shù)?
你能把上述的結論用數(shù)學符號語言表示嗎?
當a0時,an0(n是正整數(shù));
當a
當a=0時,an=0(n是正整數(shù))?
(以上為有理數(shù)乘方運算的符號法則)
a2n=(-a)2n(n是正整數(shù));
=-(-a)2n-1(n是正整數(shù));
a2n0(a是有理數(shù),n是正整數(shù))?
例2 計算:
(1)(-3)2,(-3)3,[-(-3)]5;
(2)-32,-33,-(-3)5;
(3) , ?
讓三個學生在黑板上計算?
教師引導學生縱向觀察第(1)題和第(2)題的形式和計算結果,讓學生自己體會到,(-a)n的底數(shù)是-a,表示n個(-a)相乘,-an是an的相反數(shù),這是(-a)n與-an的區(qū)別?
教師引導學生橫向觀察第(3)題的形式和計算結果,讓學生自己體會到,寫分數(shù)的乘方時要加括號,不然就是另一種運算了?
課堂練習
計算:
(1) , , ,- , ;
(2)(-1)20xx,322,-42(-4)2,-23(-2)3;
(3)(-1)n-1?
讓學生回憶,做出小結:
1?乘方的有關概念?2?乘方的符號法則?3?括號的作用?
1?計算下列各式:
(-3)2;(-2)3;(-4)4; ;-0.12;
-(-3)3;3(-2)3;-6(-3)3;- (-4)2(-1)5?
2?填表:
3?a=-3,b=-5,c=4時,求下列各代數(shù)式的值:
(1)(a+b)2; (2)a2-b2+c2; (3)(-a+b-c)2; (4)a2+2ab+b2?
4?當a是負數(shù)時,判斷下列各式是否成立?
(1)a2=(-a)2; (2)a3=(-a)3; (3)a2= ; (4)a3= 。
5*?平方得9的數(shù)有幾個?是什么?有沒有平方得-9的有理數(shù)?為什么?
6*?若(a+1)2+|b-2|=0,求a20xxb3的值?
1?數(shù)學教學的重要目的是發(fā)展智力,提高能力,而發(fā)展智力、提高能力的核心是發(fā)展學生的思維能力?教學中,既要注重羅輯推理能力的培養(yǎng),又重注重觀察、歸納等合情推理能力的培養(yǎng)?因此,根據(jù)教學內(nèi)容和學生的認知水平,我們再一次把培養(yǎng)學生的觀察、歸納等能力列入了教學目標?
2?數(shù)學發(fā)展的歷史告訴我們,數(shù)學的發(fā)展是從三個方面前進的:第一是不斷的推廣;第二是不斷的精確化;第三是不斷的逼近?在引入新時,要盡可能使學生的學習方式與數(shù)池家的研究方式類似,不斷進行推廣。a2是由計算正方形面積得到的,a3是由計算正方體的體積得到的,而a4,a5,,an是學生通過類推得到的?
推廣后的結果是還要有嚴密的定義,讓學生從更高的觀點看自己推廣的結果?一般來說,一個概念或一個公式形成后,要對其字母的意義、相互的關系、應用的范圍逐項分析?在an中,a取任意有理數(shù),n取正整數(shù)的說明還是必要的,要培養(yǎng)學生這種良好的學習習慣?
3?把學生做鞏固性練習和總結運算規(guī)律放在一起進行,其效果就遠遠超出了鞏固性練習的初衷?
我們知道,學生必須通過自己的探索才能學會數(shù)學和會學數(shù)學,與其說學習數(shù)學,不如說體驗數(shù)學、做數(shù)學?始終給學生以創(chuàng)造發(fā)揮的機會,讓學生自己在學習中扮演主動角色,教師不代替學生思考,把重點放在教學情境的設計上?例如,通過實際計算,讓學生自己休會到負數(shù)與分數(shù)的乘方要加括號?
4?有理數(shù)的乘方中反映出來的數(shù)學思想主要是分類討論思想,在例1中,精心設計了三組計算題,引導學生從底數(shù)大于零、等于零、小于零分析、歸納、概括出有理數(shù)乘方的符號法則,使學生在潛移默化中形成分類討論思想?符號語言的使用,優(yōu)化了表示分類討論思想的形式,尤其是負數(shù)的奇次冪和偶次冪是大分類中的小分類,用符號語言就更加明顯?在練習中讓學生完成問題(-1)n-1,進一步鞏固了分類討論思想,使這種思想得以落實?
有理數(shù)的乘方教案作業(yè)布置 有理數(shù)的乘方教案教學反思篇三
1.知道乘方運算與乘法運算的關系,會進行有理數(shù)的乘方運算;
2.知道底數(shù)、指數(shù)和冪的概念,會求有理數(shù)的正整數(shù)指數(shù)冪;
3.會用科學記數(shù)法表示較大的數(shù)。
1.有理數(shù)乘方的意義,求有理數(shù)的正整數(shù)指數(shù)冪;
2.用科學記數(shù)法表示較大的數(shù)。
有理數(shù)乘方結果(冪)的符號的確定。
教學過程(教師)
手工拉面是我國的傳統(tǒng)面食。制作時,拉面師傅將一團和好的面,揉搓成1根長條后,手握兩端用力拉長,然后將長條對折,再拉長,再對折(每次對折稱為一扣),如此反復操作,連續(xù)拉扣若干次后便成了許多細細的面條。你能算出拉扣6次后共有多少根面條嗎?
乘方的有關概念
將一張報紙對折再對折……直到無法對折為止。你對折了多少次?請用算式表示你對折出來的報紙的層數(shù)。
你還能舉出類似的實例嗎?
1.對于式子(-3)6與-36,下列說法中,正確的是()
a.它們的意義相同
b.它們的結果相同
c.它們的意義不同,結果相等
d.它們的意義不同,結果也不相等
2.下列敘述中:
①正數(shù)與它的絕對值互為相反數(shù);
②非負數(shù)與它的絕對值的差為0;
③-1的立方與它的平方互為相反數(shù);
④±1的倒數(shù)與它的平方相等。其中正確的個數(shù)有()
a.1b.2c.3d.4
有理數(shù)的乘方教案作業(yè)布置 有理數(shù)的乘方教案教學反思篇四
一、教學目標:
1、認知目標
正確理解乘方、冪、指數(shù)、底數(shù)等概念,在現(xiàn)實背景中理解有理數(shù)乘方的意義,會進行有理數(shù)乘方的運算。
2、能力目標
(1). 通過對乘方意義的理解,培養(yǎng)學生觀察、比較、分析、歸納、概括的能力,滲透轉化的數(shù)學思想。
(2).使學生能夠靈活地進行乘方運算。
3、情感目標
讓學生體會數(shù)學與生活的密切聯(lián)系,培養(yǎng)學生靈活處理現(xiàn)實問題的能力。
二、教學重難點和關鍵:
1、{}教學重點:正確理解乘方的意義,掌握乘方運算法則。
2、教學難點:正確理解乘方、底數(shù)、指數(shù)的概念,并合理運算,
3、教學關鍵:弄清底數(shù)、指數(shù)、冪等概念,區(qū)分-an與(-a)n的意義。
三、教學方法
考慮到七年級學生的認知水平和結構以及思維活動特點,本節(jié)課采用多媒體直觀教學法,聯(lián)想比較、發(fā)現(xiàn)教學法,設疑思考法,逐步滲透法和師生交流相結合的方法。
四、教學過程:
1、創(chuàng)設情境,導入新課:
這一章我們主要學習了有理數(shù)的計算,其實有理數(shù)的計算在生活中無處不在。有一種游戲叫“算24點”,它是一種常見的撲克牌游戲,不知道大家有沒有玩過?那我們現(xiàn)在約定撲克牌中黑色數(shù)字為正,紅色數(shù)字為負,每次抽取4張,用加、減、乘、除四種運算使結果為24。
師:假如我現(xiàn)在抽取的是黑3 紅3 黑4 紅5 (幻燈片放映圖片)如何算24?
師:如果四張都是3呢?
生答: -3 - 3×3×(-3)=
師:現(xiàn)在老師把撲克牌拿掉一張紅3,變成2個黑3 ,1個紅3,大家有辦法湊成24嗎?
生:思考幾分鐘后,有同學會想出 的答案
師:觀察這個式子,有我們以前學過的3次方運算,那它是不是乘法運算?可以告訴大家,它是一種乘方運算,那是不是所有的乘方運算都是乘法運算,它與乘法運算又有怎樣的關系?那我們今天就一起來研究“有理數(shù)的乘方”,相信學過之后,對你解決心中的疑問會有很大的幫助。(自然引入新課)
2、動手實踐,共同探索乘方的定義
學生活動:請同學們拿出一張紙進行對折,再對折
問題:(1)對折一次有幾層? 2
(2)對折二次有幾層?
(3)對折三次有幾層?
(4)對折四次有幾層?
師:一直對折下去,你會發(fā)現(xiàn)什么?
生:每一次都是前面的2倍。
師:請同學們猜想:對折20次有幾層?怎樣去列式?
生:20個2相乘
師:寫起來很麻煩,既浪費時間又浪費空間,有沒有簡單記法?
簡記: ……
師:請同學們總結 對折n次有幾層?可以簡記為什么?
2×2×2×2……×2
shape mergeformat
n個2
生:可簡記為:
師:猜想: 生:
師:怎樣讀呢? 生:讀作 的 次方
老師總結:求 個相同因數(shù)的積的運算叫乘方;乘方運算的結果叫冪;(教師解說乘方的特殊性),在 中, 叫做底數(shù)(相同
的因數(shù)), 叫做指數(shù)(相同因數(shù)的個數(shù))。
注意:乘方是一種運算,冪是乘方運算的結果。看作是的次方的結果時,也可讀作的次冪。
有理數(shù)的乘方教案作業(yè)布置 有理數(shù)的乘方教案教學反思篇五
1、 知道乘方運算與乘法運算的關系,會進行有理數(shù)的乘方運算。
2、 知道底數(shù)、指數(shù)和冪的概念,會求有理數(shù)的正整數(shù)指數(shù)冪。
歸納概念
n個a相乘aaa= ,讀作: 。 其中n表示因數(shù)的個數(shù)。
求 相同因數(shù)的積的運算叫作乘方。乘方運算的結果叫冪。
例1:計算
(1)26 (2)73 (3)(3)4 (4)(4)3
例2:(1) ( )5 (2)( )3 (3)( )4
【想一想】1.(1)10,(1)7,( )4,( )5是正數(shù)還是負數(shù)?
2.負數(shù)的冪的符號如何確定?
思考題:1、(a2)2+(b+3)2=0,求a和b的值。
2、計算 ( 2)20 09 +(2)20xx
3、在右 邊的33的方格中,現(xiàn)在以兩種不同的方式往方格內(nèi)放硬幣,一種每格放100枚,三 學怎樣
1.某種細菌在培養(yǎng)過程中,細菌每半小時分裂一次(由分裂成兩個),經(jīng)過兩個小時,這 種細菌由1個可分裂成( )
a 8個 b 16個 c 4個 d 32個
2.一根長1cm的繩子,第一次剪去一半。第 二次剪去剩下的一半,如此剪下去,第六次剪后剩下的繩子長度為( )
a ( )3m b ( )5m c( )6m d( )12 m
3.(3.4)3,(3.4)4,(3.4)5的從小到大的順序是 。
4.計 算
(1)(3)3 (2)(0.8)2 (3)02004 (4 )12004
(5)104 (6)( )5 (7)-( )3 (8) 43
(9)32(3)3+(2)223 (10)-18(3)2
5.已知(a2)2+|b5|=0,求(a)3( b)2.
會用科學計數(shù)法表示絕對值較大的數(shù)。
定義:一般地,一個大于10的數(shù)可以寫成 的形式,其中 ,n是正整數(shù),這種記數(shù)法稱為科學記數(shù)法。
例題教學
例1:1972年3月美國發(fā)射的先驅者10號,是人類發(fā)往太陽系外的第一艘人造太空探測器。截至20xx年12月人們最后一次收到它發(fā)回的信號時,它已飛離地球1220000000 0km。用科學記數(shù)法表示這個距離。
例2:用科學記數(shù)法表示下列各數(shù)。
(1)10000000 (2) 57000000 (3) 123000 0000 00
例3.寫出下列用科學記數(shù)法表示的數(shù)的原數(shù)。
2.31105 3.001104
1.28103 8.3456108
思考:比較大小
(1)9.2531010 與1.0021011
(2)7.84109與1.01101 0
學怎 樣
1.用科學記數(shù)法表示314160000得 ( )
a.3.1416108 b. 3.1416109 c. 3.1416101 0 d. 3.1416104
2.稀土元素有獨特的性能和廣泛的應用,我國的稀土資源總儲藏量約為1050000000噸,是全世界稀土資源最豐富的國家,將1050000000噸用科學記數(shù)法表示為( )
a.1.051010噸 b. 1.05109噸 c.1.051 08噸 d. 0.105101 0噸
3.人類的遺傳物質是dna,dna是很 大的鏈,最短的22號染色體也長達30000000個核苷酸,3000000 0用科學記數(shù)法表示為 ( )
a.3108 b. 3107 c.3106 d. 0.3108
4.第五次全國人口普查結果表示:我國的總人口已達到13億。請用科學記數(shù)法表示13億為 。
5 .比較大小:
10.9 108 1.11010 ; 1.11108 9.99107 .
6.用科學記數(shù)法表示下列各數(shù)。
(1)32000 (2) -80000000 000 (3)2895.8 (4)- 389999900000000
有理數(shù)的乘方教案作業(yè)布置 有理數(shù)的乘方教案教學反思篇六
教學目標:
1.通過現(xiàn)實背景理解有理數(shù)乘方的意義,能進行有理數(shù)乘方的運算。
2.已知一個數(shù),會求出它的正整數(shù)指數(shù)冪,滲透轉化思想。
3.培養(yǎng)學生觀察、歸納能力,以及思考問題、解決問題的能力,切實提高學生的運算能力。
教學重點:正確理解乘方的意義,能利用乘方運算法則進行有理數(shù)乘方運算。
教學難點:準確理解底數(shù)、指數(shù)和冪三個概念,并能進行求冪的運算。
教學過程設計:
(一)創(chuàng)設情境,導入新課
提問并引導學生回答:在小學里我們學過一個數(shù)的平方和立方是如何定義的?怎樣表示?
a·a記作a2,讀作a的平方(或a的2次方),即a2=a·a;a·a·a記作a3,讀作a的立方(或a的3次方),即a3=a·a·a.(分別是邊長為a的正方形的面積與棱長為a的正方體的體積)
(多媒體演示細胞分裂過程)某種細胞,每過30分鐘便由1個分裂成2個,經(jīng)過5小時,這種細胞由1個分裂成多少個?
1個細胞30分鐘分裂成2個,1個小時后分裂成2×2個,1.5小時后分裂成2×2×2個,…,5小時后要分裂10次,分裂成個,為了簡便可將記作210.
(二)合作交流,解讀探究
一般地,n個相同的因數(shù)a相乘,即,記作an,讀作a的n次方。
求n個相同因數(shù)的積的運算,叫做乘方,乘方的結果叫做冪。在an中,a叫做底數(shù),n叫做指數(shù),當an看作a的n次方的結果時,也可讀作a的n次冪。
說明:(1)舉例94來說明概念及讀法。
(2)一個數(shù)可以看作這個數(shù)本身的一次方,通常省略指數(shù)1不寫。
(3)因為an就是n個a相乘,所以可以利用有理數(shù)的乘法運算來進行有理數(shù)的乘方運算。
(4)乘方是一種運算,冪是乘方運算的結果。
(三)應用遷移,鞏固提高
【例1】(1)(-4)3;(2)(-2)4;(3)-24.
點撥:(1)計算時仍然是要先確定符號,再確定絕對值。
(2)注意(-2)4與-24的區(qū)別。
根據(jù)有理數(shù)的乘法法則得出有理數(shù)乘方的符號規(guī)律:
負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù);
正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都是0.
【例2】計算:
(1)()3; (2)(-)3;
(3)(-)4; (4)-;
(5)-22×(-3)2; (6)-22+(-3)2.
(四)總結反思,拓展升華
1.引導學生作知識小結:理解有理數(shù)乘方的意義,運用有理數(shù)乘方運算法則進行有理數(shù)乘方的運算,熟知底數(shù)、指數(shù)和冪三個基本概念。
2.教師擴展:有理數(shù)的乘方就是幾個相同因數(shù)積的運算,可以運用有理數(shù)乘方法則進行符號的確定和冪的求值。
乘方的含義:(1)表示一種運算;(2)表示運算的結果。乘方的讀法:(1)當an表示運算時,讀作a的n次方;(2)當an表示運算結果時,讀作a的n次冪。
乘方的符號法則:(1)正數(shù)的任何次冪都是正數(shù);(2)零的任何正整數(shù)次冪都是零;(3)負數(shù)的偶次冪是正數(shù),奇次冪是負數(shù)。注意(-a)n與-an及()n與的區(qū)別和聯(lián)系。
(五)課堂跟蹤反饋
1.課本p42練習第1、2題。
2.補充練習
(1)在(-2)6中,指數(shù)為,底數(shù)為.?
(2)在-26中,指數(shù)為,底數(shù)為.?
(3)若a2=16,則a=.?
(4)平方等于本身的數(shù)是,立方等于本身的數(shù)是.?
(5)下列說法中正確的是()
a.平方得9的數(shù)是3
b.平方得-9的數(shù)是-3
c.一個數(shù)的平方只能是正數(shù)
d.一個數(shù)的平方不能是負數(shù)
(6)下列各組數(shù)中,不相等的是()
a.(-3)2與-32 b.(-3)2與32
c.(-2)3與-23 d.|2|3與|-23|
(7)下列各式中計算不正確的是()
a.(-1)2003=-1
b.-12002=1
c.(-1)2n=1(n為正整數(shù))
d.(-1)2n+1=-1(n為正整數(shù))
(8)下列各數(shù)表示正數(shù)的是()
a.|a+1| b.(a-1)2
c.-(-a) d.||
第2課時 有理數(shù)的混合運算
教學目標:
1.了解有理數(shù)混合運算的意義,掌握有理數(shù)的混合運算法則及運算順序。
2.能夠熟練地進行有理數(shù)的加、減、乘、除、乘方的運算,并在運算過程中合理使用運算律。
教學重點:根據(jù)有理數(shù)的混合運算順序,正確地進行有理數(shù)的混合運算。
教學難點:有理數(shù)的混合運算。
教學過程:
一、有理數(shù)的混合運算順序:
1.先乘方,再乘除,最后加減。
2.同級運算,從左到右進行。
3.如有括號,先做括號內(nèi)的運算,按小括號、中括號、大括號依次進行。
【例1】計算:
(1)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2);
(2)1-×[3×(-)2-(-1)4]+÷(-)3.
強調:按有理數(shù)混合運算的順序進行運算,在每一步運算中,仍然是要先確定結果的符號,再確定結果的絕對值。
【例2】觀察下面三行數(shù):
-2,4,-8,16,-32,64,…;①
0,6,-6,18,-30,66,…;②
-1,2,-4,8,-16,32,….③
(1)第①行數(shù)按什么規(guī)律排列?
(2)第②③行數(shù)與第①行數(shù)分別有什么關系?
(3)取每行數(shù)的第10個數(shù),計算這三個數(shù)的和。
【例3】已知a=-,b=4,求()2--(ab)3+a3b的值。
二、課堂練習
1.計算:
(1)|-|2+(-1)101-×(0.5-)÷;
(2)1÷(1)×(-)÷(-12);
(3)(-2)3+3×(-1)2-(-1)4;
(4)[2-(-)3]-(-)+(-)×(-1)2;
(5)5÷[-(2-2)]×6.
2.若|x+2|+(y-3)2=0,求的值。
3.已知a=a+a2+a3+…+a2004,若a=1,則a等于多少?若a=-1,則a等于多少?
三、課時小結
1.注意有理數(shù)的混合運算順序,要熟練進行有理數(shù)混合運算。