在日常學習、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。大家想知道怎么樣才能寫一篇比較優質的范文嗎?下面我給大家整理了一些優秀范文,希望能夠幫助到大家,我們一起來看一看吧。
數學建模論文篇一
1、社團招新
在12年9月的時候,對于我們數模人來說我們協會還是非常的稚嫩,12年秋季的社團招新可以說是我們第一次真正意義的招新,所以對于當時那剛上任不久的社團委員來說是一個極大的挑戰,因為根本沒有上屆可供借鑒的經驗,所有工作都要他們自己去準備或請教別人,而且那時沒有新會員,所以人手也很奇缺。但是我們取得的結果卻給了我們極大的欣慰,因為我們通過自己的努力在很短的時間內完成了各項準備工作,并且在招新當天不到一個上午就完成了我們的招新任務,后面還有很多想加入到人都因為名額已滿而未能加入。這些都充分說明了我們工作的細致、認真、高效。還有一個特別值得我們一提的是招新過程中理學院周書記還親臨指導,由此可見學校領導對我們協會工作的極大支持與重視。在此我們所有數模人也對學校領導的關心表示衷心的感謝。而招新工作之后我們進行了認真的總結,對以后的同類型工作作了指導性的計劃,同時也為下一屆招新留下了經驗。
2、會員見面會
在協會招新一個星期之后,我們組織了以“相識、相知”為主題的會員見面會以使會員之間相互認識,也對協會作個詳細的了解。見面會在信息部長的主持下,會場氣氛非常活躍,大家都踴躍的往臺上擠,爭相著讓別人了解自己,許多人都談起了自己大學甚至人生的理想,讓許多委員們都深受感染,以致最后有些人還沒上臺發言樓棟管理員就要趕我們走了。會后我們通過會員的反饋了解到他們大部都對見面會的情況非常滿意,通過見面會不僅認識了許多朋友,也對數學建模有了全新的認識而且還產生了他們的數模夢想。對于見面會的.成功,主要得益于會長的指導,及副會和個部長對會長要求的嚴格執行,使得我們的準備材料非常充分全面,而且還在見面會前還進行了一個模擬式的見面會。
3、數學建模知識講座
在去年11月中旬,為了及時促進新會員對數學建模的深入理解和學習,我們邀請到了“全國大學生數學建模優秀指導老師”鐘培華對新會員作了一個數學建模專題講座。因為鐘培華老師作為江西賽區僅有的幾位由中國數學建模委員會認定全國大學生數學建模優秀指導老師,其講座具有很強的指導意義和啟發性。
我們通過對當時講座現場的觀察,會員們都聽的很認真,許多人都能在講座中積極回答老師的提問。那次的活動對新會員來說是一次可與不可求的學術大餐,對于我們協會的領導者來說我們看到了理學院老師對我們協會的鼓舞與肯定,讓我們更堅定了我們事業--建設好我們的協會,為學校培養更具實力的數模精英。
4、圣誕送平安
根據會長的要求:要把協會建設成會員的家,讓會員能在協會里找到存在感,實現價值感,要讓各個部長等成為會員的兄弟姐妹而不是干巴巴領導。各位委員都記得很牢,時刻把會員放在心間,因此在去年圣誕的時候,大家都不約而同的要求組織“圣誕送平安”的活動。于是,大家說干就干,經過一番準備后。在平安夜前各位委員各個提著一袋蘋果逐個寢室地跑了一晚上,將它們親手送到了每個會員手中,并遞上了平安的祝福。其實,類似的溫情活動還很多,像許多部門都嚴格按照會長要求每半個月邀請部門會員進行一次聊天或散步的活動,這些都是委員們為建設協會溫情氣氛所作的努力。
5、南昌市高校數學建模聯賽
數學建模協會作為一個學術科技類社團,我們的落腳點是要強化學術實力,濃厚學術氣氛。因此在今年5月份我們協會聯合南昌其他幾所高校舉辦了一個南昌市高校數學建模聯賽。此次活動規模龐大。從賽事主辦方來看,是聯合了幾所不同高校,實現了協會的對外交流與實力展示,同時也是我整個我校數學建模能力的一個對外表現。從參賽對象來看,不再局限于協會內部,而是面對我校所有在校生,不限專業不限年級,這就給全校所有的數模愛好者創造了一個難得的機會,使得他們能與其他高校的數模愛好者站在同一舞臺上去發揮自己的才能。也許活動規模早已注定了活動結果的成功,本次活動從4月中旬開始策劃和準備,4月下旬開始全校范圍內進行為期一周的各種途徑的活動宣傳,宣傳結束后在南區門口設立了現場報名點。最后結果有近60名優秀選手獲得參賽資格,共組建了17支參賽隊伍,相比上屆參賽人有一定增長。
6、全國大學生數學建模競賽報名
全國大學生數學建模競賽的報名及組織工作作為我協會在理學院領導要求及指導下的一項重頭工作,目前已由理學院書記給出指示并在會長的組織安排下已完成了前期準備并進入了宣傳階段。從現階段情況來看,只要后期繼續努力,我們定會圓滿地完成學校交給我們的任務的。
7、例行培訓
根據協會工作安排,協會每半個月組織一次例行培訓。從去年到今年培訓活動一直堅持舉行,讓每位會員從數學建模專業能力上獲得了極大的提升,為我校培養高水平數學建模人才打下了堅實的基礎,同時這也正是我們協會的目標所在,即強化了學術實力,濃厚了學術氣氛。
1、內部建設成效顯著
自本學年以來,協會就致力于協會的正規化和人文化的內部建設工作。隨著各項工作的順利開展,各項規章制度也日趨完善。協會在原有的規章制度的條件下,制定了新的干部干事管理方案和會員服務套餐,對協會會員以協會最好的服務使會員感到協會的溫馨。除此之外,協會還根據本協會的具體情況完善了人員安排,各部門增設了副部長,這位以后穩定發展鋪平了道路提供了一定人員保障。
2、文宣工作有聲有色
在宣傳工作方面,本協會每次宣傳工作均進行了認真總結,使得協會宣傳部積累了大量的經驗性的資料,形成了專業的宣傳團隊。從最近幾次的宣傳情況來看,他們的宣傳工作都僅僅有條,宣傳內容充實有趣,別出心裁。
3、會議召開合理高效
協會借鑒和吸取了以往發展中的各種經驗和教訓,重視會議的程序規范性和會議效果,聽取了廣大協會成員的意見,從而制定了比較合理的會議制度。協會會議是協會會長部長等向協會與會成員直接傳達協會工作活動的相關動態和安排通知的有效傳達方式,并通過會議了解協會相關部門、成員的思想和動態。協會確定每半個月舉行一次例會,在會議上,會長及各部門部長對協會的前期工作活動等進行相關的總結及對后期的工作等進行部分規劃,主持及發言人員會前的都會做好各項準備,對會議流程作出合理規劃,保證了會議的合理性、高效性。
1、干事主人翁意識不夠
協會的干事(副部長級以下會員)對自己的定位還不夠清晰,對協會的發展方向和總體規劃不是太清楚,將自己僅僅定位在聽部長、會長的話,只知道做事而沒有更好的思考為什么要這么做,怎么做得更好等,還過多的依賴于自己的部長,部長不通知做某些事,自己就沒必要做,就不做,還沒有一種以協會主人翁的態度和思想去做協會的各項工作。因此,更不能主動擔當協會的各項大任,對協會所提出的各種戰略方針沒有進行過多的思考,考略問題還不夠全面。針對這一問題,我們要在以后的工作中與干事么多交流,在交流中引導會員建立主人翁意思,啟發他們對協會深層測的思考。
2、協會部門與部門間交流缺乏
平時小活動大多以部門為單位開展導致部門與部門間的干事關系生疏。從最近幾次的大型活動來看,當涉及到部門與部門的合作時就暴露出問題。由此看見,要將合作性的活動分散來開展,要讓干事間的交流活動常規化。
3、活動開展缺乏創新
縱觀一年以來開展的各項活動,基本都是沿襲上一屆的,我們本屆沒有開展具有創造性的活動來,長此以往必將導致協會氣氛沉悶,沒有生機,喪失吸引力。
為以后能開展出具有新意的活動,首先我們要主動思考適合我們新活動,同時注重與外校同類型社團的交流,從別人那里獲取新的想法。
數學建模論文篇二
將數學建模思想融入高等數學的教學中來,是目前大學數學教育的重要教學方式。建模思想的有效應用,不僅顯著提高了學生應用數學模式解決實際問題的能力,還在培養大學生發散思維能力和綜合素質方面起到重要作用。本文試從當前高等數學教學現狀著手,分析在高等數學中融入建模思想的重要性,并從教學實踐中給出相應的教學方法,以期能給同行教師們一些幫助。
數學建模;高等數學;教學研究
建模思想使高等數學教育的基礎與本質。從目前情況來看,將數學建模思想融入高等教學中的趨勢越來越明顯。但是在實際的教學過程中,大部分高校的數學教育仍處在傳統的理論知識簡單傳授階段。其教學成果與社會實踐還是有脫節的現象存在,難以讓學生學以致用,感受到應用數學在現實生活中的魅力,這種教學方式需要亟待改善。
高等數學是現在大學數學教育中的基礎課程,也是一門必修的課程。他能為其他理工科專業的學生提供很多種解題方式與解題思路,是很多專業,如自動化工程、機械工程、計算機、電氣化等必不可少的基礎課程。同時,現實生活中也有很多方面都涉及高數的運算,如,銀行理財基金的使用問題、彩票的概率計算問題等,從這些方面都可以看出人們不能僅僅把高數看成是一門學科而已,它還與日常生活各個方面有重要的聯系。但現在很多學校仍以應試教育為主,采取填鴨式教學方式,加上高數的教材并沒有與時俱進,將其與生活的關系融入教材內,使學生無法意識到高數的重要性以及高數在日常生活中的魅力,因此產生排斥甚至對抗的心理,只是在臨考前突擊而已。因此,對高數進行教學改革是十分有必要的,而且怎么改,怎么讓學生發現高數的魅力,并積極主動學習高數也是作為教師所面臨的一個重大問題。
第一,能夠激發學生學習高數的興趣。建模思想實際上是使用數學語言來對生活中的實際現象進行描述的過程。把建模思想應用到高等數學的學習中,能夠讓學生們在日常生活中理解數學的實際應用狀況與解決日常生活問題的方便性,讓學生們了解到高數并不只是一門課程,而是整個日常生活的基礎。例如,在講解微分方程時,可以引入一些歷史上的一些著名問題,如以vanmeegren偽造名畫案為代表的贗品鑒定問題、預報人口增長的malthus模型與logistic模型等。 這樣,才能激發出學生對高等數學的興趣,并積極投入高等數學的學習中來。
第二,能夠提高學生的數學素質。社會的高速發展不斷要求學生向更全面、更高素質的方向發展。這就要求學生不僅要懂得專業知識,還要能夠將專業知識運用到實際生活中,擁有解決問題的頭腦和實際操作的技能。這些其實都可以通過建模思想在高等數學課堂中實現。高等數學的包容性、邏輯性都很強。將建模思想融入高等數學的教學中,既能提高學生的數學素質,還能鍛煉學生綜合分析問題,解決問題的能力。通過理論與生活實踐相結合,達到社會發展的要求,提高自身的社會競爭力。
第三,能夠培養學生的綜合創新能力。“萬眾創新”不僅僅是一個口號,而應該是現代大學生應該具備的一種能力。將數學建模思想融入高等數學教學中,能讓大學生從實際生活出發,多方位、多角度考慮問題,提高學生的創新能力。學生的潛力是可以在多次的建模活動中挖掘出來的。因此教師應多組織建模活動,讓學生從實際生活中組建材料,不斷創新思維,找到解決問題的方式與方法。
第一,轉變教學理念。改變傳統教學思想與教育方式,提高學生建模的積極性,增強學生對建模方式的認同。教師不能只是單一的講解理論知識,還需要引導學生親自體驗,從互動的教學過程中,理解建模思想的重要性。
第二,在生活問題中應用建模思想。其實,很多日常生活中的很多例子,都是可以解決課堂上的問題的。數學是來源于生活的。作為教師,應該主動引領學生參與實踐活動,將課本的知識盡量與日常問題聯系到一起,發動學生主動用建模思想解決問題,提高創新能力,從不同的角度,以不同的方式提高解決問題的能力。例如,學校要組織元旦晚會,需要學生去采購必需品。超市有多種打折的方式,這時候教師就可以引導學生使用建模思想,要求去學生以模型來分析各種打折方式的優缺點,并選擇最優惠的方式買到最優質的晚會用品。這樣學生才會發現建模的樂趣,并了解如何在生活案例中應用建模思想。
第三,不斷鞏固和提高建模應用。數學建模思想融入生活實踐不是一蹴而就的,而是一個不斷實踐、循序漸進的過程。人們也不能為了應用建模思想而將日常生活生拉硬套。教師也應該盡可能多地搜集生活中的案例,將建模思想與生活實踐更靈活地聯系在一起。不斷地由淺入深,將建模思想牢牢地印在學生的腦海中。并根據每個學生的獨特性,不斷開發學生的創新潛力和發散思維能力,提高邏輯思維能力和空間想象力,在實踐中鞏固深化建模思想。五、結束語綜上所述,將建模思想融入高等數學教學中,能顯著提高課堂教學質量和學生解決問題的能力,因此教師應從整體上把握高數的教學體系,讓學生逐步建立建模思維,不斷深化和鞏固用建模思想解決問題的能力。只有這樣,融入數學建模思想的高等數學的教學效果才會起到應有的作用。
數學建模論文篇三
不知不覺一個學期的工作走向了尾聲,本學期我社團在院領導及老師的帶領下開展各項活動,并取得了一些成績,同時也發現了新的問題,現將本學期的工作進行總結如下:
本學期社團工作一開始,我們就針對上學期工作中出現的問題對章程進行了進一步完善。而且為了讓成員更加了解社團、進一步嚴明紀律以更好的提高社團的工作效率,通過理事會研究決定將章程書面化,并由部長組織部內成員學習。
為了更好地參加9月份“全國數學建模大賽”,協會建立了學習群并開展了相應的培訓。
1、加強成員之間的交流;
2、做好數學建模及數學實驗選修課的工作;
3、了解“數學建模大賽”的動態;
4、做好“數學建模大賽”的報名及培訓工作。
(一)數學建模選修及數學實驗選修開展工作
數學建模及實驗是我社團指導老師針對我學院及社團的需要開設的選修課程,有助于成員學習并了解更多的建模知識。
(二)思維鍛煉及團隊意識培養活動古希臘雅典神廟上有句箴言:“認識你自己。”古羅馬大哲西塞羅說:“每個人都對自己了解最少。”他們的提示適用于我們對右腦的認識和對自己的了解。那么我們又要如何的去鍛煉我們的思維呢?一根線,一張紙,幾根細竹,幾筆色彩,就構成了理想的框架。理想期待同學們放飛,期待青年嬌子傲視大地,向目的地奔馳。放風箏的戶外活動讓同學們放飛了夢想,并樹立了為實現夢想而努力奮斗的信心。數獨技巧講座更是了大家緩解緊張的學習和生活帶來的壓力,感受到了數學的樂趣,展現了社團成員們的昂揚風貌。
(三)首屆“大明眼鏡”杯數獨大賽
為響應建黨90周年及我學院成立10周年,我社聯合兄弟社團特舉辦首屆數獨大賽。通過此次比賽豐富我校大學生的課余生活,拓展大家的思維能力,增強同學們的邏輯思維能力和推理能力,讓大家對數學的學習興趣更加濃厚。本次比賽共有180余人參加,經過緊張激烈的角逐之后,最后信息學院的李凱躍同學以17秒的優勢奪冠,獲得二等獎的是理學系戈苑、李小麗同學;三等獎信息學院王健、理學系董全苗、王通同學;優秀獎信息學院趙鵬飛、龐浩淼、苗成森及管理學院柴曉玲、王蕊同學。
(四)“全國數學建模大賽”的報名及培訓
6月份我社團在理學系的帶領下面向全院展開了“全國數學建模大賽”的報名工作,并于7月8號到7月14開展為期一星期的第一期集訓,使同學們自身有了一定的提高,為9月9日到12日的比賽打好基礎。
總體而言,通過本學期多次活動的舉辦,使我社團在各方面都有了一個很大的提高。首先理事會成員的組織能力與責任心上得到了進一步的提高,再就是為我社團培養出來一大批責任心強的創業人才,并且在工作任務的分配上也能使每一個會員都有事可干。總而言之,我們這一學期的進步是巨大的,但是還是存在幾點瑕疵:
1、部分理事會成員的領導能力有待提高;
2、大型活動的組織能力上還有待提高;
3、社團內成員的凝集力還是不夠;
4、社團的執行力還差的遠;
5、各部門間的配合嚴重不足。
上面的四點也就是本學期我們暴漏出的問題,也是影響我社團進步的關鍵因素之所在。希望我們能在下一學期中得到改進,讓我社團能夠“百尺竿頭更進一步”。
數學建模論文篇四
[論文關鍵詞]建模地位 建模實踐 建模意識
[論文摘要]建模能力的培養,不只是通過實際問題的解決才能得到提高,更主要的是要培養一種建模意識,解題模型的構造也是一條培養建模方法的很好的途徑。
一、建模地位
數學是關于客觀世界模式和秩序的科學,數、形、關系、可能性、最大值、最小值和數據處理等等,是人類對客觀世界進行數學把握的最基本反映。數學方法越來越多地被用于環境科學、自然資源模擬、經濟學和社會學,甚至還有心理學和認知科學,其中建模方法尤為突出。數學教育家漢斯·弗賴登塔爾認為:“數學來源于現實,存在于現實,并且應用于現實,數學過程應該是幫助學生把現實問題轉化為數學問題的過程。”《新課程標準》中強調:“數學教學是數學活動,教師要緊密聯系學生的生活環境,要重視從學生的生活實踐經驗和已有的知識中學習數學和理解數學。”
因此,不管從社會發展要求還是從新課標要求來看,培養學生的建構意識和建模方法成了高中數學教學中極其重要內容之一。在新課標理念指導下,同時結合自己多年的教學實踐,我認為:培養建模能力,不能簡單地說是培養將實際問題轉化為數學問題的能力,課堂教學中更重要的是要培養學生的建模意識。以下我就從一堂習題課的片段加以說明我的觀點及認識。
二、建模實踐
片段、用模型構造法解計數問題(計數原理習題課)。
計數問題情景多樣,一般無特定的模式和規律可循,對思維能力和分析能力要求較高,如能抓住問題的條件和結構,利用適當的模型將問題轉化為常規問題進行求解,則能使之更方便地獲得解決,從而也能培養學生建模意識。
例1:從集合{1,2,3,…,20}中任選取3個不同的數,使這3個數成等差數列,這樣的等差數列可以有多少個?
解:設a,b,c∈n,且a,b,c成等差數列,則a+c=2b,即a+c是偶數,因此從1到20這20個數字中任選出3個數成等差數列,則第1個數與第3個數必同為偶數或同為奇數,而1到20這20個數字中有10個偶數,10個奇數。當第1和第3個數選定后,中間數被唯一確定,因此,選法只有兩類:
(1)第1和第3個數都是偶數,有幾種選法;(2)第1和第3個數都是奇數,有幾種選法;于是,選出3個數成等差數列的個數為:2=180個。
解后反思:此題直接求解困難較大,通過模型之間轉換,將原來求等差數列個數的問題,轉化為從10個偶數和10個奇數每次取出兩個數且同為偶數或同為奇數的排列數的模型,使問題迎刃而解。
例2:在一塊并排10壟的田地中,選擇2壟分別種植a,b兩種不同的作物,每種作物種植一壟,為了有利于作物生長,要求a,b兩種作物的間隔不小于6壟,則不同的選壟方法共有幾種(用數字作答)。
解法1:以a,b兩種作物間隔的壟數分類,一共可以分成3類:
(1)若a,b之間隔6壟,選壟辦法有3種;(2)若a,b之間隔7壟,選壟辦法有2種;(3)若a,b之間隔8壟,選壟辦法有種;故共有不同的選壟方法3+2+=12種。
解法2:只需在a,b兩種作物之間插入“捆綁”成一個整體的6壟田地,就可以滿足題意。因此,原問題可以轉化為:在一塊并排4壟的田地中,選擇2壟分別種植a,b兩種作物有 種,故共有不同的選壟方法=12種。
解后反思:解法1根據a,b兩種作物間隔的壟數進行分類,簡單明了,但注意要不重不漏。解法2把6壟田地“捆綁”起來,將原有模型進行重組,使有限制條件的問題變為無限制條件的問題,極大地方便了解題。
三、建模認識
從以上片段可以看到,其實數學建模并不神秘,只要我們老師有建模意識,幾乎每章節中都有很好模型素材。
現代心理學的研究表明,對許多學生來說,從抽象到具體的轉化并不比具體到抽象遇到的困難少,學生解數學應用題的最常見的困難是不會將問題提煉成數學問題,即不會建模。在新課標要求下我們怎樣才能有效培養學生建模意識呢?我認為我們不僅要認識到新課標下建模的地位和要有建模意識,還應該要認識什么是數學建模及它有哪些基本步驟、類型。以下是對數學建模的一些粗淺認識。
所謂數學建模就是通過建立某個數學模型來解決實際問題的方法。數學模型可以是某個圖形,也可以是某個數學公式或方程式、不等式、函數關系式等等。從這個意義上說,以上一堂課就是很好地建模實例。
一般的數學建模問題可能較復雜,但其解題思路是大致相同的,歸納起來,數學建模的一般解題步驟有:
1.問題分析:對所給的實際問題,分析問題中涉及到的對象及其內在關系、結構或性態,鄭重分析需要解決的問題是什么,從而明確建模目的。
2.模型假設:對問題中涉及的對象及其結構、性態或關系作必要的簡化假設,簡化假設的目的是為了用盡可能簡單的數學形式建立模型,簡化假設必須基本符合實際。
3.模型建立:根據問題分析及模型假設,用一個適當的數學形式來反映實際問題中對象的性態、結構或內在聯系。
4.模型求解:對建立的數學模型用數學方法求出其解。
5.把模型的數學解翻譯成實際解,根據問題的實際情況或各種實際數據對模型及模型解的合理性、適用性、可靠性進行檢驗。
從建模方法的角度可以給出高中數學建模的幾種重要類型:
1.函數方法建模。當實際問題歸納為要確定某兩個量(或若干個量)之間的數量關系時,可通過適當假設,建立這兩個量之間的某個函數關系。
2.數列方法建模。現實世界的經濟活動中,諸如增長率、降低率、復利、分期付款等與年份有關的實際問題以及資源利用、環境保護等社會生活的熱點問題常常就歸結為數列問題。即數列模型。
3.枚舉方法建模。許多實際問題常常涉及到多種可能性,要求最優解,我們可以把這些可能性一一羅列出來,按照某些標準選擇較優者,稱之為枚舉方法建模,也稱窮舉方法建模(如我們熟悉的線性規劃問題)。
4.圖形方法建模。很多實際問題,如果我們能夠設法把它“翻譯”成某個圖形,那么利用圖形“語言”常常能直觀地得到問題的求解方法,我們稱之為圖形方法建模,在數學競賽的圖論中經常用到。
從數學建模的定義、類型、步驟、概念可知,其實數學建模并不神秘,有時多題一解也是一種數學建模,只有我們認識到它的重要性,心中有數學建模意識,才能有效地引領學生建立數學建模意識,從而掌握建模方法。
參考文獻:
[1]董方博,《高中數學和建模方法》,武漢出版社.
[2]柯友富,《運用雙曲線模型解題》,中學數學教學參考,2004(6).
[3]陸習曉,《用模型法解計數問題》,中學教研,2006(9).
[4]湯浩,《回歸生活,讓數學課堂“活”起來》,數學教育研究,2006(7)
數學建模論文篇五
初中數學建模論文范文
數學建模隨著人類的進步,科技的發展和社會的日趨數字化,應用領域越來越廣泛,人們身邊的數學內容越來越豐富。強調數學應用及培養應用數學意識對推動素質教育的實施意義十分巨大。數學建模在數學教育中的地位被提到了新的高度,通過數學建模解數學應用題,提高學生的綜合素質。本文將結合數學應用題的特點,把怎樣利用數學建模解好數學應用問題進行剖析,希望得到同仁的幫助和指正。
一、數學應用題的特點
我們常把來源于客觀世界的實際,具有實際意義或實際背景,要通過數學建模的方法將問題轉化為數學形式表示,從而獲得解決的一類數學問題叫做數學應用題。數學應用題具有如下特點:
第二、數學應用題的求解需要采用數學建模的方法,使所求問題數學化,即將問題轉化成數學形式來表示后再求解。
第三、數學應用題涉及的知識點多。是對綜合運用數學知識和方法解決實際問題能力的檢驗,考查的是學生的綜合能力,涉及的知識點一般在三個以上,如果某一知識點掌握的不過關,很難將問題正確解答。
…… …… 余下全文
數學建模論文篇六
各位老師,上午好!我叫xxx,是**級**班的學生,我的論文題目是《義務教育階段學生數學建模能力評價研究》。論文是在鮑建生導師的悉心指點下完成的,在這里我向我的導師表示深深的謝意,向各位老師不辭辛苦參加我的論文答辯表示衷心的感謝,并對三年來我有機會聆聽教誨的各位老師表示由衷的敬意。下面我將本論文設計的研究背景和主要內容向各位老師作一匯報,懇請各位老師批評指導。
首先,我想談談這個畢業論文的研究背景。
在過去的30多年里,數學建模和數學應用成為數學教育的中心話題之一,表現在:關于建模的文獻大量涌現,有關數學建模的書籍相繼出版以及一系列國際會議的召開:國際數學教育大會 the international congresses on mathematicaleducation…icme,國際數學建模與應用的教學大會the internationalconferences on the teaching of mathematical modeling andapplications--ictma.
在1976年,icme-3上,henry pollak整合應用與建模到數學教學中,作了名為“數學和其他學校學科的相互作用”的調查報告(survey lecture),從而把應用與建模帶到了前沿;icme-4上,bell傲了 “學校里數學應用教學的世界范圍的可用材料”的報告、從1984年在澳大利亞的icme -5開始,應用與建模被列為每4年一次的icme會議的日程,包括常規工作(regular working),專題小組(topic groups)以及報告(lectures)。
ictma5的歷史起于考慮為那些成為研究生后將被要求解決繁雜的真實問題的本科生做準備,在英國,可以被稱為ictma之父的david burghes,決定和學校教師一起合作為中學的小孩制作有趣的建模調查,來活躍學校數學課程。ictma團體從1983年開始,每2年舉辦一次ictma大會,每次會議都會出版一本會議論文集。一系列會議提供一個論壇,討論所有領域,所有水平的數學教育---從小學到中學到學院到大學一中涉及的應用與建模教學的所有方面。在2003年,ictma成為icmi的一個附屬團體,許多成員參與了 icmi研究系列14 “數學教育中的應用與建模”.
其次,我想談談這篇論文的主要內容。
本文根據框架上的五個評價桁標進fr測試題的編制,并得到按照“義務教育階段學生數學建模能力評價框架”編制逑模測試任務時的5個原則:
情境維度:背景不容易剝離:
內容維度:情境下的數學內界所以有可能是多樣的;
過程維度:解答建模測試任務仏:要“數學化”(現實情境--數學模型)的過程;
任務類型設置維度:三種類型的建模測試形式可以選擇某種或某幾種;
建模水平維度:需要考慮建模測試任務的水平屬于再現、聯系、反思的哪一個水平。
并按照評價框架生成數學建模能力測試卷,選取全國八個不同地區的1172名學生進行測試,采用項目反映理論(irt: item response theory)對于測試結果進行分析,檢驗測試題的擬定水平是否符合客觀水平,從而驗證了評價框架的合理性和有效性。
最后,我想談談這篇論文存在的不足。
這篇論文的寫作以及修改的過程,也是我越來越認識到自己知識與經驗缺乏的過程。雖然,我盡可能地收集材料,竭盡所能運用自己所學的知識進行論文寫作,但論文還是存在許多不足之處,有待改進。請各位評委老師多批評指正,讓我在今后的學習中學到更多。
謝謝!
數學建模論文篇七
首先闡述數學建模內涵;其次分析數學建模與數學教學的關系;最后總結出提高數學教學效果的幾點思考。
數學建模;數學教學;教學模式
什么是數學建模,為什么要把數學建模的思想運用到數學課堂教學中去?經過反復閱讀有關數學建模與數學教學的文章,仔細研修數十個高校的數學建模精品課程,數學建模優秀教學案例等,筆者對數學教學與數學建模進行初步探索,形成一定認識。
數學建模即運用數學知識與數學思想,通過對實際問題數學化,建立數學模型,并運用計算機計算出結果,對實際問題給出合理解決方案、建議等。系統的談數學建模需從以下三個方面談起。
1.數學建模課程。
“數學建模”課程特色鮮明,以綜合門類為基礎,重實踐,重應用。旨在使學生打好數學基礎,增強應用數學意識,提高實踐能力,建立數學模型解決實際問題。注重培養學生參與現代科研活動主動性與參與工程技術開發興趣,注重培養學生創新思維及創新能力等相關素質。
2.數學建模競賽。
1985年,美國工業與應用數學學會發起的一項大學生競賽活動名為“數學建模競賽”。旨在提高學生學習數學主動性,提高學生運用計算機技術與數學知識和數學思想解決實際問題綜合能力。學生參與這項活動可以拓寬知識面,培養自己團隊意識與創新精神。同時這項活動推動了數學教師與數學教學專家對數學體系、教學方式與教學知識重新認識。1992年,教育部高教司和中國工業與數學學會創辦了“全國大學生數學建模競賽”。截止20xx年10月已舉辦有21屆。大力推進了我國高校數學教學改革進程。
3.數學建模與創新教育。
創新教育是現代教育思想的靈魂。數學建模競賽是實現數學教育創新的重要載體。如20xx年a題,葡萄酒的評價中,要求學生對葡萄酒原料與釀造、儲存于葡萄酒色澤、口味等有全面認識;而20xx年d題,機器人行走避障問題,要求學生了解對機器人行走特點;20xx年b題,乘公交看奧運,要求學生了解公交換乘系統。大學生數學建模競賽試題涉及不是單一數學知識。因此數學教師在數學教學中必須融合其它學科知識。同時學生參與數學建模競賽有助于增強其積極思考應用數學知識創造性解決實際問題的意識。
數學建模是數學應用與實踐的重要載體;數學教學旨在傳授數學知識與數學思想,激發學生應用數學解決實際問題的意識。數學建模與數學教學相輔相成,數學建模思想與數學教學將有助于提高教學效果,反之傳統應試扼殺了學生學習數學的興趣與主觀能動性;數學教學效果,在數學建模過程中體現顯著。
三、數學教學
1.數學教學“教”什么。電子科技大學的黃廷祝老師說:“數學教學,最重要的就是數學的精神、思想和方法,而數學知識是第二位的。”因此數學教師不僅要傳授數學知識,更要讓學生知道數學的來龍去脈,領會數學精神實質。
2.如何提高數學教學效果。提高數學教師自身素質是關鍵,創新數學教學模式是手段,革新評價機制是保障。
①提高數學教師自身素質。
數學教師自身素質是提高數學教學效果的關鍵。20xx年胡書記在《xxx關于加強教師隊伍建設的意見》中明確提出,我國教育出了問題,問題關鍵在教師隊伍。數學學科特點鮮明。若數學教師數學素養與綜合能力不強,則提高數學教學效果將無從談起。因此數學教師需通過如參加培訓、學習精品課程、同行評教、與專家探討等途徑努力提高自身素養。
②創新數學教學模式 。
(2)必須改革數學教學模式。傳統講授式教學模式有很多不足,學生參與不夠,不能發揮學生的主體能動性。因此,在今后數學教學中,要注重發揮學生的主體能動性,如增加課題互動環節,采用小組討論,教師引導等方式。
在數學教學過程中,要巧用提問。教師可針對某一具體教學內容根據數學思維方式特點巧設提問,讓學生回答,教師在關鍵的地方進行啟發點撥,并適當的總結。在問答過程中,培養學生分析和思考問題、解決問題能力;在數學教學過程中,可采用分組討論形式。采用小組討論與集體展示、互評相結合。旨在教育學生學會傾聽,分析不同;學會表達,勇于提出見解,培養學生團隊意識。
在數學課堂上可通過對典型案例的剖析,使學生親歷發現問題、認識問題和解決問題的過程。培養學生實際動手操作能力。
(3)建立多元化評價機制。一是要建立多元化教師教學評價機制。采用多元化考核、綜合評定教師教學效果的方法,有利于教師發展。二是要建立多元化學生學習效果評價機制。多元化評價機制對學生評價更客觀、公正,有利于發揮學生主觀能動性。
數學建模論文篇八
將數學建模思想融入高等數學的教學中來,是目前大學數學教育的重要教學方式。建模思想的有效應用,不僅顯著提高了學生應用數學模式解決實際問題的能力,還在培養大學生發散思維能力和綜合素質方面起到重要作用。本文試從當前高等數學教學現狀著手,分析在高等數學中融入建模思想的重要性,并從教學實踐中給出相應的教學方法,以期能給同行教師們一些幫助。
數學建模;高等數學;教學研究
建模思想使高等數學教育的基礎與本質。從目前情況來看,將數學建模思想融入高等教學中的趨勢越來越明顯。但是在實際的教學過程中,大部分高校的數學教育仍處在傳統的理論知識簡單傳授階段。其教學成果與社會實踐還是有脫節的現象存在,難以讓學生學以致用,感受到應用數學在現實生活中的魅力,這種教學方式需要亟待改善。
高等數學是現在大學數學教育中的基礎課程,也是一門必修的課程。他能為其他理工科專業的學生提供很多種解題方式與解題思路,是很多專業,如自動化工程、機械工程、計算機、電氣化等必不可少的基礎課程。同時,現實生活中也有很多方面都涉及高數的運算,如,銀行理財基金的使用問題、彩票的概率計算問題等,從這些方面都可以看出人們不能僅僅把高數看成是一門學科而已,它還與日常生活各個方面有重要的聯系。但現在很多學校仍以應試教育為主,采取填鴨式教學方式,加上高數的教材并沒有與時俱進,將其與生活的關系融入教材內,使學生無法意識到高數的重要性以及高數在日常生活中的魅力,因此產生排斥甚至對抗的心理,只是在臨考前突擊而已。因此,對高數進行教學改革是十分有必要的,而且怎么改,怎么讓學生發現高數的魅力,并積極主動學習高數也是作為教師所面臨的一個重大問題。
第一,能夠激發學生學習高數的興趣。建模思想實際上是使用數學語言來對生活中的實際現象進行描述的過程。把建模思想應用到高等數學的學習中,能夠讓學生們在日常生活中理解數學的實際應用狀況與解決日常生活問題的方便性,讓學生們了解到高數并不只是一門課程,而是整個日常生活的基礎。例如,在講解微分方程時,可以引入一些歷史上的一些著名問題,如以vanmeegren偽造名畫案為代表的贗品鑒定問題、預報人口增長的malthus模型與logistic模型等。 這樣,才能激發出學生對高等數學的興趣,并積極投入高等數學的學習中來。
第二,能夠提高學生的數學素質。社會的高速發展不斷要求學生向更全面、更高素質的方向發展。這就要求學生不僅要懂得專業知識,還要能夠將專業知識運用到實際生活中,擁有解決問題的頭腦和實際操作的技能。這些其實都可以通過建模思想在高等數學課堂中實現。高等數學的包容性、邏輯性都很強。將建模思想融入高等數學的教學中,既能提高學生的數學素質,還能鍛煉學生綜合分析問題,解決問題的能力。通過理論與生活實踐相結合,達到社會發展的要求,提高自身的社會競爭力。
第三,能夠培養學生的綜合創新能力。“萬眾創新”不僅僅是一個口號,而應該是現代大學生應該具備的一種能力。將數學建模思想融入高等數學教學中,能讓大學生從實際生活出發,多方位、多角度考慮問題,提高學生的創新能力。學生的潛力是可以在多次的建模活動中挖掘出來的。因此教師應多組織建模活動,讓學生從實際生活中組建材料,不斷創新思維,找到解決問題的方式與方法。
第一,轉變教學理念。改變傳統教學思想與教育方式,提高學生建模的積極性,增強學生對建模方式的認同。教師不能只是單一的講解理論知識,還需要引導學生親自體驗,從互動的教學過程中,理解建模思想的重要性。
第二,在生活問題中應用建模思想。其實,很多日常生活中的很多例子,都是可以解決課堂上的問題的。數學是來源于生活的。作為教師,應該主動引領學生參與實踐活動,將課本的`知識盡量與日常問題聯系到一起,發動學生主動用建模思想解決問題,提高創新能力,從不同的角度,以不同的方式提高解決問題的能力。例如,學校要組織元旦晚會,需要學生去采購必需品。超市有多種打折的方式,這時候教師就可以引導學生使用建模思想,要求去學生以模型來分析各種打折方式的優缺點,并選擇最優惠的方式買到最優質的晚會用品。這樣學生才會發現建模的樂趣,并了解如何在生活案例中應用建模思想。
第三,不斷鞏固和提高建模應用。數學建模思想融入生活實踐不是一蹴而就的,而是一個不斷實踐、循序漸進的過程。人們也不能為了應用建模思想而將日常生活生拉硬套。教師也應該盡可能多地搜集生活中的案例,將建模思想與生活實踐更靈活地聯系在一起。不斷地由淺入深,將建模思想牢牢地印在學生的腦海中。并根據每個學生的獨特性,不斷開發學生的創新潛力和發散思維能力,提高邏輯思維能力和空間想象力,在實踐中鞏固深化建模思想。五、結束語綜上所述,將建模思想融入高等數學教學中,能顯著提高課堂教學質量和學生解決問題的能力,因此教師應從整體上把握高數的教學體系,讓學生逐步建立建模思維,不斷深化和鞏固用建模思想解決問題的能力。只有這樣,融入數學建模思想的高等數學的教學效果才會起到應有的作用。
數學建模論文篇九
數學建模本身是一個創造性的思維過程,它是對數學知識的綜合應用,具有較強的創新性,以下是一篇關于數學建模教育開展策略探究的論文范文,歡迎閱讀參考。
大學數學具有高度抽象性和概括性等特點,知識本身難度大再加上學時少、內容多等教學現狀常常造成學生的學習積極性不高、知識掌握不夠透徹、遇到實際問題時束手無策,而數學建模思想能激發學生的學習興趣,培養學生應用數學的意識,提高其解決實際問題的能力。數學建模活動為學生構建了一個由數學知識通向實際問題的橋梁,是學生的數學知識和應用能力共同提高的最佳結合方式。因此在大學數學教育中應加強數學建模教育和活動,讓學生積極主動學習建模思想,認真體驗和感知建模過程,以此啟迪創新意識和創新思維,提高其素質和創新能力,實現向素質教育的轉化和深入。
一、數學建模的含義及特點
數學建模即抓住問題的本質,抽取影響研究對象的主因素,將其轉化為數學問題,利用數學思維、數學邏輯進行分析,借助于數學方法及相關工具進行計算,最后將所得的答案回歸實際問題,即模型的檢驗,這就是數學建模的全過程。一般來說",數學建模"包含五個階段。
1.準備階段
主要分析問題背景,已知條件,建模目的等問題。
2.假設階段
做出科學合理的假設,既能簡化問題,又能抓住問題的本質。
3.建立階段
從眾多影響研究對象的因素中適當地取舍,抽取主因素予以考慮,建立能刻畫實際問題本質的數學模型。
4.求解階段
對已建立的數學模型,運用數學方法、數學軟件及相關的工具進行求解。
5.驗證階段
用實際數據檢驗模型,如果偏差較大,就要分析假設中某些因素的合理性,修改模型,直至吻合或接近現實。如果建立的模型經得起實踐的檢驗,那么此模型就是符合實際規律的,能解決實際問題或有效預測未來的,這樣的建模就是成功的,得到的模型必被推廣應用。
二、加強數學建模教育的作用和意義
(一) 加強數學建模教育有助于激發學生學習數學的興趣,提高數學修養和素質
數學建模教育強調如何把實際問題轉化為數學問題,進而利用數學及其有關的工具解決這些問題, 因此在大學數學的教學活動中融入數學建模思想,鼓勵學生參與數學建模實踐活動,不但可以使學生學以致用,做到理論聯系實際,而且還會使他們感受到數學的生機與活力,激發求知的興趣和探索的欲望,變被動學習為主動參與其效率就會大為改善。數學修養和素質自然而然得以培養并提高。
(二)加強數學建模教育有助于提高學生的分析解決問題能力、綜合應用能力
數學建模問題來源于社會生活的眾多領域,在建模過程中,學生首先需要閱讀相關的文獻資料,然后應用數學思維、數學邏輯及相關知識對實際問題進行深入剖析研究并經過一系列復雜計算,得出反映實際問題的最佳數學模型及模型最優解。因此通過數學建模活動學生的視野將會得以拓寬,應用意識、解決復雜問題的能力也會得到增強和提高。
(三)加強數學建模教育有助于培養學生的創造性思維和創新能力
所謂創造力是指"對已積累的知識和經驗進行科學地加工和創造,產生新概念、新知識、新思想的能力,大體上由感知力、記憶力、思考力、想象力四種能力所構成"[1].現今教育界認為,創造力的培養是人才培養的關鍵,數學建模活動的各個環節無不充滿了創造性思維的挑戰。
很多不同的實際問題,其數學模型可以是相同或相似的,這就要求學生在建模時觸類旁通,挖掘不同事物間的本質,尋找其內在聯系。而對一個具體的建模問題,能否把握其本質轉化為數學問題,是完成建模過程的關鍵所在。同時建模題材有較大的靈活性,沒有統一的標準答案,因此數學建模過程是培養學生創造性思維,提高創新能力的過程[2].
(四)加強數學建模教育有助于提高學生科技論文的撰寫能力
數學建模的結果是以論文形式呈現的,如何將建模思想、建立的模型、最優解及其關鍵環節的處理在論文中清晰地表述出來,對本科生來說是一個挑戰。經歷數學建模全過程的磨練,特別是數模論文的撰寫,學生的文字語言、數學表述能力及論文的撰寫能力無疑會得到前所未有的提高。
(五)加強數學建模教育有助于增強學生的團結合作精神并提高協調組織能力建模問題通常較復雜,涉及的知識面也很廣,因此數學建模實踐活動一般效仿正規競賽的規則,三人為一隊在三天內以論文形式完成建模題目。要較好地完成任務,離不開良好的組織與管理、分工與協作[3].
三、開展數學建模教育及活動的具體途徑和有效方法
(一)開展數學建模課堂教學
即在課堂教學中,教師以具體的案例作為主要的教學內容,通過具體問題的建模,介紹建模的過程和思想方法及建模中要注意的問題。案例教學法的關鍵在于把握兩個重要環節:
案例的選取和課堂教學的組織。
教學案例一定要精心選取,才能達到預期的教學效果。其選取一般要遵循以下幾點。
1. 代表性:案例的選取要具有科學性,能拓寬學生的知識面,突出數學建模活動重在培養興趣提高能力等特點。
2. 原始性:來自媒體的信息,企事業單位的報告,現實生活和各學科中的問題等等,都是數學建模問題原始資料的重要來源。
3. 創新性:案例應注意選取在建模的某些環節上具有挑戰性,能激發學生的創造性思維,培養學生的創新精神和提高創造能力。
案例教學的課堂組織,一部分是教師講授,從實際問題出發,講清問題的背景、建模的要求和已掌握的信息,介紹如何通過合理的假設和簡化建立優化的數學模型。還要強調如何用求解結果去解釋實際現象即檢驗模型。另一部分是課堂討論,讓學生自由發言各抒己見并提出新的模型,簡介關鍵環節的處理。最后教師做出點評,提供一些改進的方向,讓學生自己課外獨立探索和鉆研,這樣既突出了教學重點,又給學生留下了進一步思考的空間,既避免了教師的"滿堂灌",也活躍了課堂氣氛,提高了學生的課堂學習興趣和積極性,使傳授知識變為學習知識、應用知識,真正地達到提高素質和培養能力的教學目的[4].
(二)開展數模競賽的專題培訓指導工作
建立數學建模競賽指導團隊,分專題實行教師負責制。每位教師根據自己的專長,負責講授某一方面的數學建模知識與技巧,并選取相應地建模案例進行剖析。如離散模型、連續模型、優化模型、微分方程模型、概率模型、統計回歸模型及數學軟件的使用等。學生根據自己的薄弱點,選擇適合的專題培訓班進行學習,以彌補自己的不足。這種針對性的數模教學,會極大地提高教學效率。
(四)開展校內數學建模競賽活動
完全模擬全國大學生數模競賽的形式規則:定時公布賽題,三人一組,只能隊內討論,按時提交論文,之后指導教師、參賽同學集中討論,進一步完善。筆者負責數學建模競賽培訓近 20 年,多年的實踐證明,每進行一次這樣的訓練,學生在建模思路、建模水平、使用軟件能力、論文書寫方面就有大幅提高。多次訓練之后,學生的建模水平更是突飛猛進,效果甚佳。
如 2008 年我指導的隊榮獲全國高教社杯大學生數學建模競賽的最高獎---高教社杯獎,這是此賽設置的唯一一個名額,也是當年從全國(包括香港)院校的約 1 萬多個本科參賽隊中脫穎而出的。又如 2014 年我校 57 隊參加全國大學生數學建模競賽,43 隊獲獎,獲獎比例達 75%,創歷年之最。
(五)鼓勵學生積極參加全國大學生數學建模競賽、國際數學建模競賽
全國大學生數學建模競賽創辦于 1992 年,每年一屆,目前已成為全國高校規模最大的基礎性學科競賽, 國際大學生數學建模競賽是世界上影響范圍最大的高水平大學生學術賽事。參加數學建模大賽可以激勵學生學習數學的積極性,提高運用數學及相關工具分析問題解決問題的綜合能力,開拓知識面,培養創造精神及合作意識。
四、結束語
數學建模本身是一個創造性的思維過程,它是對數學知識的綜合應用,具有較強的創新性,而高校數學教學改革的目的之一是要著力培養學生的創造性思維,提高學生的創新能力。因此應將數學建模思想融入教學活動中,通過不斷的數學建模教育和實踐培養學生的創新能力和應用能力從而提高學生的基本素質以適應社會發展的要求。
參考文獻:
[1]辭海[m].上海辭書出版社,2002,1:237.
[2]許梅生,章迪平,張少林。 數學建模的認識與實踐[j].浙江科技學院學報,2003,15(1):40-42.
[3]姜啟源,謝金星,一項成功的高等教育改革實踐[j].中國高教研究,2011,12:79-83.
[4]饒從軍,王成。論高校數學建模教學[j].延邊大學學報(自然科學學版),2006,32(3):227-230.
[5]段璐靈。數學建模課程教學改革初探[j].教育與職業,2013,5:140-142.
數學建模論文篇十
有助于調動學生學習的興趣
在高等數學教學中,如果缺乏正確的認識與定位,就會致使學生學習動機不明確,學習積極性較低,在實際解題中,無法有效拓展思路,缺乏自主解決問題的能力。在高等數學教學中應用數學建模思想,可以讓學生對高等數學進行重新的認識與定位,準確掌握有關概念、定理知識,并且將其應用在實際工作當中。與純理論教學相較而言,在高等數學教學中應用數學建模思想,可以更好的調動學生學習的興趣與積極性,讓學生可以自主學習相關知識,進而提高課堂教學質量。有助于提高學生的數學素質隨著科學技術水平的不斷提高,社會對人才的要求越來越高,大學生不僅要了解專業知識,還要具有分析、解決問題的能力,同時還要具備一定的組織管理能力、實際操作能力等,這樣才可以更好的滿足工作需求。高等數學具有嚴密的邏輯性、較強的抽象性,符合時代發展的需求,滿足了社會發展對新型人才的需求。在高等數學教學中應用數學建模思想,不僅可以提高學生的數學素質,還可以增強學生的綜合素質。同時,在高等數學教學中,應用數學建模思想,可以加強學生理論和實踐的結合,通過數學模型的構建,可以培養學生的數學運用能力與實踐能力,進而提高學生的綜合素質。
有助于培養學生的創新能力
和傳統高等數學純理論教學不同,數學建模思想在高等數學教學中應用的時候,更加重視實際問題的解決,通過數學模型的構建,解決實際問題,有助于培養學生的創新精神,在實際運用中提高學生的創新能力。數學建模活動需要學生參與實際問題的分析與解決,完成數學模型的求解。在實際教學中,學生具有充足的思考空間,為提高學生的創新意識奠定了堅實的基礎,同時,充分發揮了學生的自身優勢,挖掘了學生學習的潛能,有效解決了實際問題。在很大程度上提高了學生數學運用能力,培養了學生的創新意識,增強了學生的創新能力。
在進行數學建模的時候,一定要保證實例簡明易懂,結合日常生活的實際情況,創設相應的教學情境,激發學生學習的興趣。從易懂的實際問題出發,由淺到深的展開教學內容,通過建模思想的滲透,讓學生進行認真的思考,進而掌握一些學習的方法與手段。在實際教學中,不要強求統一,針對不同的專業、院校,展開因材施教,加強與教學研究的結合,不斷發現問題,并且予以改進,達到預期的教學效果。教師需要編寫一些可以融入的教學單元,為相關課程教學提供有效的數學建模素材,促進教師與學生的學習與研究,培養個人的教學風格。除此之外,在實際教學中,可以將教學重點放在大一的第一學期,加強教師引導與教育,根據實際問題,重視微積分概念、思想、方法的學習,結合數學建模思想,讓學生充分認識到高等數學的重要性,進而展開相關學習。
轉變教學觀念
在高等數學教學中應用數學建模思想,需要重視教學觀念的轉變,向學生傳授數學模型思想,提高學生數學建模的意識。在有關概念、公式等理論教學中,教師不僅要對知識的來龍去脈進行講解,還要讓學生進行親身體會,進而在體會中不斷提高學習成績。比如,37支球隊進行淘汰賽,每輪比賽出場2支球隊,勝利的一方進入下一輪,直到比賽結束。請問:在這一過程中,一共需要進行多少場比賽?一般的解題方法就是預留1支球隊,其它球隊進行淘汰賽,那么36/2+18/2+10/2+4/2+2/2+1=36。然而在實際教學中,教師可以轉變一下教學思路,通過逆向思維的形式解答,即,每場比賽淘汰1支球隊,那么就需要淘汰36支球隊,進而比賽場次為36。通過這樣的方式,讓學生在練習過程中,加深對數學建模思想的認識,提高高等數學教學的有效性。
高等數學概念教學中的應用
在高等數學概念教學中,相較于初高中數學概念,更加抽象,如導數、定積分等。在對這些概念展開學習的時候,學生一般都比較重視這些概念的來源與應用,希望可以在實際問題中找出這些概念的原型。實際上,在高等數學微積分概念中,其形成本身就具有一定的數學建模思想。為此,在導入數學概念的時候,借助數學建模思想,完成教學內容是非常可行的。每引出—個新概念,都應有—個刺激學生學習欲的實例,說明該內容的應用性。在高等數學概念教學中,通過實際問題情境的創設與導入,可以讓學生了解概念形成的過程,進而運用抽象知識解決概念形成過程,引出數學概念,構建數學模型,加強對實際問題的解決。比如,在學習定積分概念的時候,可以設計以下教學過程:首先,提出問題。怎樣求勻變速直線運動路程?怎樣計算不規則圖形的面積?等等。其次,分析問題。如果速度是不變的,那么路程=速度×時間。問題是這里的速度不是一個常數,為此,上述公式不能用。最后,解決問題。將時間段分成很多的小區間,在時間段分割足夠小的情況下,因為速度變化為連續的,可以將各小區間的速度看成是勻速的,也就是說,將小區間內速度當成是常數,用這一小區間的時間乘以速度,就可以計算器路程,將所有小區間的路程加在一起,就是總路程,要想得到精確值,就要將時間段進行無限的細化。使每個小區間都趨于零,這樣所有小區間路程之和就是所求路程。針對問題二而言,也可以將其轉變成一個和式的極限。這兩個問題都可以轉變成和式極限,拋開實際問題,可以將和式極限值稱之為函數在區間上的定積分,進而得出定積分的概念。解決問題的過程就是構建數學模型的過程,通過教學活動,將數學知識和實際問題進行聯系,提高學生學習的興趣與積極性,實現預期的教學效果。
高等數學應用問題教學中的應用
對于教材中實際應用問題比較少的情況而言,可以在實際教學中挑選一些實際應用案例,構建數學模型予以示范。在應用問題教學中應用數學建模思想,可以將數學知識與實際問題進行結合,這樣不僅可以提高數學知識的應用性,還可以提高學生的應用意識,并且在填補數學理論和應用的方面發揮了重要作用。對實際問題予以建模,可以從應用角度分析數學問題,強化數學知識的運用。比如,微元法作為高等數學中最為重要、最為基礎的思想與方法,是高等數學普遍應用的重要手段,也是利用微積分解決實際問題,構建數學模型的重要保障。為此,在高等數學教學中,一定要將其貫穿教學活動的始終。在實際教學中,教師可以根據生命科學、經濟學、物理學等實際案例,加深學生對有關知識歷史的了解,提高學生對有關知識的理解,培養學生的數學建模意識。又比如,在講解導數應用知識的時候,教師可以適當引入切線斜率、瞬時速度、邊際成本等案例;在講解極值問題的時候,可以適當引入征稅、造價最低等案例。這樣不僅可以激發學生學習的興趣與積極性,還可以創設良好的教學氛圍,對提高課堂教學效果有著十分重要的意義。
避免“題海戰術”
數學是一個系統學科,需要從頭開始教學,為此,教師一定要注意循序漸進。首先,在教學過程中,教師可以從教材出發,對概念、定理等進行講解,讓學生進行掌握與運用,轉變教學模式,讓學生牢記教材知識。其次,慎重選擇例題練習,避免題海戰術,培養學生的數學建模思想,逐漸提高學生的數學素質。
強調學生的獨立思考
在以往高等數學教學中,均是采用“填鴨式”的教學模式,不管學生是否能夠接受,一味的講解教材知識,不重視學生數學建模思想的培養。目前,在教學過程中,教師一定要強調學生獨立思考能力的培養,通過數學模型的構建,激發學生的求知欲與興趣,明確學習目標,培養學生的數學思維,進而全面滲透數學建模思想,提高學生的數學素質。
注意恐懼心理的消除
在高等數學教學中,注意消除學生學習的恐懼心理及反感,提高課堂教學效果。在實際教學過程中,培養學生勇于面對錯誤的品質,讓學生認識到錯誤并不可怕,可怕地是無法改正錯誤,為此,一定要提高學生的抗打擊能力,幫助學生樹立學習的自信心,進而展開有效的學習。學習是一個需要不斷鞏固和加強的過程,在此過程中,必須加強教師的監督作用,讓學生可以積極改正自身錯誤,并且不會在同一個問題上犯錯誤,提高學生總結與反思的能力,在學習過程中形成數學思想,進而不斷提高自身的數學成績。
總而言之,高等數學課堂教學是培養學生數學品質的主要場所之一,通過高等數學教學和數學建模思想的結合,可以加深學生對高等數學知識的理解,進而可以提高學生對高等數學知識的運用能力。目前,在高等數學教學中,一定要重視數學建模思想的融入,改進教學模式,促使教學內容的全面展開,完成預期的教學任務,提高學生的數學水平。
數學建模論文篇十一
大部分數學知識是抽象的,概念比較枯燥,造成學生學習困難,而數學建模的運用,在很大程度上可以將抽象的數學知識轉化成實體模型,讓學生更容易理解和學習數學知識。教師要做的就是了解并掌握數學建模的方法,并且把這種教學方法運用到數學教學中。
對教師來說,發現好的教學方法不是最重要的,而是如何把方法與教學結合起來。通過對數學建模的長期研究和實踐應用,筆者總結了數學建模的概念以及運用策略。
一、數學建模的概念
想要更好地運用數學建模,首先要了解什么是數學建模。可以說,數學建模就像一面鏡子,可以使數學抽象的影像產生與之對應的具體化物象。
二、在小學數學教學中運用數學建模的策略
1.根據事物之間的共性進行數學建模
想要運用數學建模,首先要對建模對象有一定的感知。教師要創造有利的條件,促使學生感知不同事物之間的共性,然后進行數學建模。
教師應做好建模前的指導工作,為學生的數學建模做好鋪墊,而學生要學會嘗試自己去發現事物的共性,爭取將事物的共性完美地運用到數學建模中。在建模過程中,教師要引導學生把新知識和舊知識結合起來的作用,將原來學習中發現的好方法運用到新知識的學習、新數學模型的構建中,降低新的數學建模的難度,提高學生數學建模的成功率。如在教學《圖形面積》時,教師可以利用不同的圖形模板,讓學生了解不同圖形的面積構成,尋找不同圖形面積的差異以及圖形之間的共性。這樣直觀地向學生展示圖形的變化,可以加深學生對知識的理解,提高學生的學習效率。
2.認識建模思想的本質
建模思想與數學的本質緊密相連,它不是獨立存在于數學教學之外的。所以在數學建模過程中,教師要幫助學生正確認識數學建模的本質,將數學建模與數學教學有機結合起來,提高學生解決問題的能力,讓學生真正具備使用數學建模的能力。
建模過程并不是獨立于數學教學之外的,它和數學的教學過程緊密相連。數學建模是使人對數學抽象化知識進行具體認識的工具,是運用數學建模思想解決數學難題的過程。因此,教師要將它和數學教學組成一個有機的整體,不僅要幫助學生完成建模,更要帶領學生認識數學建模的本質,領悟數學建模思想的真諦,并逐漸引導學生使用數學建模解決數學學習過程中遇到的問題。
3.發揮教材在數學建模上的作用
教材是最基礎的教學工具,在數學教材中有很多典型案例可以利用在數學建模上,其中很大一部分來源于生活,更易于小學生學習和理解,有助于學生構建數學建模思想。教師要利用好教材,培養學生的建模能力,幫助學生建造更易于理解的數學模型,從而提高學生的學習效率。如在教學加減法時,教材上會有很多數蘋果、香蕉的例題,這些就是很好的數學模型,因為貼近生活,可以激發學生的學習興趣,培養學生數學建模的能力,所以教師應該深入研究教材。
數學建模是一種很好的數學教學方法,教師要充分利用這種教學方法,真正做到實踐與理論完美結合。
數學建模論文篇十二
我入協會一年多了,僅以我在協會的這些時光來總結一下我眼中的協會工作,也是對協會在我任會長期間的意見。
在我入會期間,我結識了很多對數學建模愛好的學長。沒有得說,包括我們前任會長曹正雄學長。在協會里邊有許許多多獲過很多獎項的人,每一個人進來都不會空著手回去,因為本著同個愛好,大家走在了一起,并且相識,相知,共同學習探索。在我們老會長和梁老師的帶領之下出征全國數學建模競賽,并且帶回許多的榮譽。所以這可以說明一個現象,那就是在我們協會大家相處的都比較融洽,協會的人都比較好相處,比較愛好學習。這是我協會的一個特點。
在這個學期我們舉行了三次活動,分別是招新骨干競選,數學建模知識競賽,還有一個就是數學建模交流會。在骨干競選的時候人是相當的多,因為每一個新生對于一些新鮮事物總是很重視很想去嘗試,然后都想在講臺上好好表現自己,展現自己的才華,從而讓自己脫穎而出。而后就是數學建模知識競賽,可能是因為宣傳力度不大的緣故吧,來參加的人也就將近70多個人,并不是所有的會員都參與了我們的活動,無論人多人少,我們活動都得做得最好。讓所有來參加活動的人都不只是玩樂,而且要在活動中學習到知識和團隊精神。這次活動本人比較滿意,就是在準備了之后還是有許多的細節問題沒有注意,但是我們集體的大腦,把問題都在第一時間解決。最后一次活動就是數學建模交流會,我們請到了許多獲獎的學長來為我們上了一堂生動的課程,每一個獲獎背后都有許許多多的汗水,我相信每一個到場的人都會學習了很多,并且也給自己規劃了以后,我們的學長還走到人群中去為學弟們解決無論生活還是學習上的問題,更加激發了他們學習的斗志。
我們每個協會都應該做到保留優良傳統的同時要發現我們自身的問題和潛在的問題,及早的去解決才能夠更長久的發展下去。 下面我來總結一下我認為有問題的地方,還有我覺得要努力的地方。 我們數學建模協會是一個學術性的協會,平時的學習,探索最為重要,雖然協會安排了每周都有帶隊去聽老師的公選課,但是一個乏味的學術性問題會使人無法集中精神,也就導致后面越來越少的人參與了,不是說老師講得不夠生動,而是我們這些學生不愿意去探索,去學習。學習是強迫不來,只能激發,但是有什么辦法可以激發,辦法不是那么簡單就可以像出來的。這是個問題。
老會長的工作非常的認真和積極,工作和能力都非常的強。就是向他看齊,我也得努力的去做得更好,會長一職落在肩膀才發現原來竟然是那么的沉,會長并不是那么的好當,雖然說可以支配下面的人工作,但是也會存在別人不配合,不聽你的。這就需要磨練自己與他人的相處度了。并且安排任務并不如你自己想象的那么完美的做好,有時候在活動中會戲劇性的出現工作疏忽和失誤,這就需要自己腦子轉得很快,在相應的時間內找到解決方案。
協會建立并不是很久,新增加的東西并不太多,但還是會丟失的東西,這樣就出現了負增長,這讓我很不能理解,不過細細想想也是可以理解的。因為變化是需要有條件的,確實一個協會要發展很難,而且它的發展是細微的,不可能有大幅度的動作,還需要協會的每個人去想去做去試。協會每年招新的人數可能都過百了,但是好像能留過10個人到最后的都是少之又少,同樣的這里有管理的問題,但更多的我們沒有能留住人的地方。這又是個問題。
這些都是歸結出來的大問題,其中的小問題,要涉及很多很多,在我任職期間我會盡全力為協會,和我們這些兄弟姐妹把協會建立好。發揮集體的智慧,協會不是一個人的協會,是大家的協會,會長不是協會老大,而是委托管理人,因此在一些事情上還是發揮大家的智慧吧,畢竟團結就是力量。
數學建模論文篇十三
摘要:高職院校開設數學建模課程是具有一定意義的,要將建模思想應用到數學教學中,教師就必須適應當前的教學環境,由傳統的傳授模式轉變為創造性地傳輸方式。教師要不斷提高自我教學水平,不斷充實自己,用正確的方式引導學生進行學習、實踐。
關鍵詞:數學;教學;數學建模
1.數學建模思想的意義
數學建模是指用數學符號將要求從定量角度進行研究分析的實際問題以公式的形式表述出來,再通過進一步計算得到相關結果,用該結果解決實際問題,即通過建立數學模型和求解的整個過程。數學建模是符合學生認知發展過程的,在數學建模中,學生通過對具體的假設、研究,對問題進行深入思考,最終得到結論,再根據實際情況應用到具體問題中。整個過程經歷了提出問題、試探問題、提出猜想假設、驗證問題及得出結論,整個過程符合學生認知發展的規律。數學建模思想的應用有助于幫助學生提高對數學的重視程度,調動學生學習的主動性,讓學生的創造力得到更大的發揮。數學建模的應用對提高教師的教學水平也有所幫助,能夠幫助教師更好地對學生進行教學,由此擴大教師在學生中的影響力。教學建模的思想應用還有利于提高學生參加競賽的綜合能力,吸引更多學生參加此類競賽活動。
2.建模思想對能力的培養
數學建模思想很多是由實際問題的一般思維進行轉變才能成為抽象的數學問題的,這要求對數學建模要抓住重點,從具體問題中抽象出問題的本質。因此,建模思想對于培養學生將具體問題經過抽象和簡化用數學語言表達的能力具有重要的意義。在高職數學教學中,有很多的數學模型,這些數學模型為幫助學生解決實際問題提供了便利的方法,同時也為創建新的數學模型提供了基礎依據。數學建模是將數學理論知識和實際應用聯系起來的重要紐帶,能夠幫助學生不斷探索數學中的奧妙,以此提高學生對數學的學習興趣,提高學生實際應用數學的能力和解決實際問題的能力。運用數學建模解決實際問題的過程中,要根據已知條件的變化,靈活運用新方法和新途徑促進學生綜合運用能力和創新思維的發展。
3.數學建模在高職數學教學中的應用
利用教學內容滲透數學建模思想在數學教學中,教師要根據教材的情況和學生的實際情況,將兩者相聯系,讓學生能夠運用數學建模思想尋找解決問題的辦法,解決實際問題。在教學中,教師要向學生灌輸數學建模思想,利用具體模型設置和假設情景,把數學知識和實際生活相聯系,幫助學生更好地理解數學實際內容,提高知識應用能力。比如在高職數學對定積分概念進行教學時,就可以通過介紹曲邊梯形的面積求法,讓學生學會分割、求和、取極限的定積分模型思想,然后再進行思考,求物體的體積、質量等。如果學生發現解決這些問題的數學模型的思想基本相同,就會不斷拓展新思路解決其他問題。運用這種方式,能夠加深學生對概念的理解,拓展學習思維,強化教學效果。在學習定理公式的時候,也可以引進數學建模思想,通過提出問題、假設問題,要求學生計算求值,再根據值的正負情況求出方程式的根,根據根值與區間的關系,引導學生想出零點定理的概念總結。
利用實際問題滲透教學建模思想教師在數學建模教學或布置作業時,要與實際的生活相聯系,讓學生在實際問題的解決中學會運用建模思想。比如在問題的設置上,可以利用身邊熟悉的事物進行提問,讓學生從熟悉的環境中找到合適的解決方法。這不僅能夠幫助學生更好地理解知識概念,還與學生以后的工作有著緊密的聯系。通過在實際問題中滲透教學建模思想,讓學生掌握基本的理論知識,提高知識應用能力。此外,教師在課外作業的布置上也要運用數學建模思想解決實際的問題,讓學生能夠有效利用所學的數學知識分析解決生活中的問題,從而提高知識應用能力,培養出學生的創新思維,提高高職數學建模教學的效率。
提高數學建模思想在教材編寫中的應用目前高職數學的教材基本都是按照本科教材進行編排的,重視理論而忽視了應用。高職學生大多數對理論的興趣不大,對實際應用能夠產生一定的興趣,并較好地進行掌握。所以編寫出一本適合高職培養的目標教材是十分重要的,既能滿足高職數學建模思想的可持續發展要求,又能充分滿足學生的要求,實現高職的培養目標。在高職數學教材的編寫上,要重視學生的實際水平,不但要讓學生能夠學到相應的知識,還要為以后的學習打好基礎,培養學生的創造力和進一步深造的能力。教師要把數學建模思想方法運用到教材中,讓學生帶著問題學習,把講授的知識點和數學建模思想有機結合,提高學生掌握實際問題的能力,徹底讓學生擺脫數學乏味論的問題,能夠對所學內容學以致用。
4.提高高職數學教學數學建模思想的方式
教師要重視引導高職教師需要認識到講授知識并不是教學的終極目標,更主要的是培養學生的應用和創新能力。其教學目的應當是通過科學的數學思維方式培養學生分析問題、解決問題的能力,提高他們自主學習的意識。高職學生的整體知識水平并不是很高,對于很多問題都不能深入地進行思考,遇到難題也沒有繼續深入研究的動力,缺乏自主創新的意識和獨立思考的能力。所以教師需要重視引導的作用,引導學生的思維向更廣闊的方向發展,讓學生能夠用數學思維看待周圍的事物,仔細觀察、分析各種事物之間的聯系和存在的數學模型,并且能夠通過數學語言描述事物間的聯系,進而用求知的方式解決事物間的實際問題。教師的引導對于學生而言有啟迪作用,能夠激發學生的求知欲,對數學問題產生興趣,在實際教學中是一種重要的教學手段。
重視合作的力量教師除了積極引導學生進行數學建模思想外,還要讓學生學會用合作的方式提升自己的思維水平。合作可以利用整體的功能彌補一個人思維的狹隘面,解決思考單一問題,促進學生多方面、多角度地思考問題。合作讓學生能夠盡快找到合適的角色,通過互幫互助的方式共同提高,加快問題的解決。在合作中,學生能夠準確利用自己熟悉擅長的環節幫助提高整體的成績和思維水平,切實加強團隊的整體水平和綜合素質。團體合作還能讓每個學生都參與進去,都有展示和鍛煉自己的機會,從而增強自信心,提高學習能力,培養良好的溝通能力,促進學生之間的團結合作,幫助提高學生的交往能力。重視合作的力量,能夠幫助學生發現自己的特長和特點,增強信心,提高自我探索精神,同時合作中產生的競爭也能激發學生對數學問題進行深入探究。
重視數學建模過程數學建模的最終目標并不是解決了什么樣的問題、獲得了什么樣的結論,而是在建模過程中學生能夠通過自己的努力,不斷進行實踐和自我否定,最終找到解決具體問題的有效方式。數學建模過程也是一個學習的過程和一個不斷提升自我的過程,所以教師要重視數學建模的過程,讓學生感受到實踐過程的魅力,根據學生的基本狀況和不同的特點,綜合利用學生的特長和優點提高他們解決實際問題的能力,讓學生感受到數學的意義,體會到發現數學的樂趣,養成良好的學習習慣和思維習慣。教師通過引導學生,也要讓學生重視數學建模的過程,從數學建模中發現學習的樂趣,產生學好數學的信心和動力,并且通過不斷深造發展,能夠在數學建模中發揮自己的才能,展現出自己擅長的一面,在建模和交流中獲得感受和啟發。
5結語
高職院校開設數學建模課程是具有一定意義的,要將建模思想應用到數學教學中,教師就必須適應當前的教學環境,由傳統的傳授模式轉變為創造性地傳輸方式。教師要不斷提高自我教學水平,不斷充實自己,用正確的方式引導學生進行學習、實踐。教學中只有通過不斷創新,根據教學的實際情況提高學生的數學知識應用能力,這樣才能不斷提高學習效率,幫助學生為以后的學習和工作打下堅實的基礎。
數學建模論文篇十四
數學建模;數學應用意識;數學建模教學
為增強學生應用數學的意識,切實培養學生解決實際問題的能力,分析了高中數學建模的必要性,并通過對高中學生數學建模能力的調查分析,發現學生數學應用及數學建模方面存在的問題,并針對問題提出了關于高中進行數學建模教學的幾點意見。
數學是研究現實世界數量關系和空間形式的科學,在它產生和發展的歷史長河中,一直是和各種各樣的應用問題緊密相關的。數學的特點不僅在于概念的抽象性、邏輯的嚴密性,結論的明確性和體系的完整性,而且在于它應用的廣泛性,自進入21世紀的知識經濟時代以來,數學科學的地位發生了巨大的變化,它正在從國家經濟和科技的后備走到了前沿。經濟發展的全球化、計算機的迅猛發展,數學理論與方法的不斷擴充使得數學已成為當代高科技的一個重要組成部分,數學已成為一種能夠普遍實施的技術。培養學生應用數學的意識和能力也成為數學教學的一個重要方面。
目前國際數學界普遍贊同通過開展數學建模活動和在數學教學中推廣使用現代化技術來推動數學教育改革。美國、德國、日本等發達國家普遍都十分重視數學建模教學,把數學建模活動從大學生向中學生轉移是近年國際數學教育發展的一種趨勢。“我國的數學教育在很長一段時間內對于數學與實際、數學與其它學科的聯系未能給予充分的重視,因此,高中數學在數學應用和聯系實際方面需要大力加強。”我國普通高中新的數學教學大綱中也明確提出要切實培養學生解決實際問題的能力,要求增強應用數學的意識,能初步運用數學模型解決實際問題。這些要求不僅符合數學本身發展的需要,也是社會發展的需要。因此我們的數學教學不僅要使學生知道許多重要的數學概念、方法和結論,而且要提高學生的思維能力,培養學生自覺地運用數學知識去處理和解決日常生活中所遇到的問題,從而形成良好的思維品質。而數學建模通過"從實際情境中抽象出數學問題,求解數學模型,回到現實中進行檢驗,必要時修改模型使之更切合實際"這一過程,促使學生圍繞實際問題查閱資料、收集信息、整理加工、獲取新知識,從而拓寬了學生的知識面和能力。數學建模將各種知識綜合應用于解決實際問題中,是培養和提高學生應用所學知識分析問題、解決問題的能力的必備手段之一,是改善學生學習方式的突破口。因此有計劃地開展數學建模活動,將有效地培養學生的能力,提高學生的綜合素質。
數學建模可以提高學生的學習興趣,培養學生不怕吃苦、敢于戰勝困難的堅強意志,培養自律、團結的優秀品質,培養正確的數學觀。具體的調查表明,大部分學生對數學建模比較感興趣,并不同程度地促進了他們對于數學及其他課程的學習.有許多學生認為:"數學源于生活,生活依靠數學,平時做的題都是理論性較強,實際性較弱的題,都是在理想化狀態下進行討論,而數學建模問題貼近生活,充滿趣味性";"數學建模使我更深切地感受到數學與實際的聯系,感受到數學問題的廣泛,使我們對于學習數學的重要性理解得更為深刻"。數學建模能培養學生應用數學進行分析、推理、證明和計算的能力;用數學語言表達實際問題及用普通人能理解的語言表達數學結果的能力;應用計算機及相應數學軟件的能力;獨立查找文獻,自學的能力,組織、協調、管理的能力;創造力、想象力、聯想力和洞察力。由此,在高中數學教學中滲透數學建模知識是很有必要的。
那么當前我國高中學生的數學建模意識和建模能力如何呢?下面是節自有關人士對某次競賽中的一道建模題目學生的作答情況所作的抽樣調查。題目內容如下:
某市教育局組織了一項競賽,聘請了來自不同學校的數名教師做評委組成評判組。本次競賽制定四條評分規則,內容如下:
(1)評委對本校選手不打分。
(2)每位評委對每位參賽選手(除本校選手外)都必須打分,且所打分數不相同。
(3)評委打分方法為:倒數第一名記1分,倒數第二名記2分,依次類推。
(4)比賽結束后,求出各選手的平均分,按平均分從高到低排序,依此確定本次競賽的名次,以平均分最高者為第一名,依次類推。
本次比賽中,選手甲所在學校有一名評委,這位評委將不參加對選手甲的評分,其他選手所在學校無人擔任評委。
(ⅰ)公布評分規則后,其他選手覺得這種評分規則對甲更有利,請問這種看法是否有道理?(請說明理由)
(ⅱ)能否給這次比賽制定更公平的評分規則?若能,請你給出一個更公平的評分規則,并說明理由。
本題是一道開放性很強的好題,給學生留有很大的發揮空間,不少學生都有精彩的表現,例如關于評分規則的修正,就有下列幾種方案:
方案1:將選手甲所在學校評委的評分方法改為倒數第一名記1+分,倒數第二名記2+,…依次類推;(評分標準)
方案2:將選手甲所在學校評委的評分方法改為在原來的基礎上乘以;
方案3:對甲評分時,用其他評委的平均分計做甲所在學校評委的打分;
然而也有不少學生為空白,究其原因可能除了時間因素,學生對于較長的文字表述產生畏懼心理、不能正確閱讀是重要因素。同時,一些學生由于不能正確理解規則(3),得出選手甲的平均得分為,其他選手的平均得分為
,從而得出錯誤結論.不少學生出現“甲所在學校的評委會故意壓低其他選手的分數,因而對甲有利”的解釋,而沒有意識到作出必要的假設是數學建模方法中的重要且必要的一環。有些學生在正確理解題意的基礎上,提出了“規則對甲有利”的理由,例如:排名在甲前的同學少得了1分;甲所在學校的評委不給其他選手最高分(n分),所以甲得最高分的概率比其他選手高;相當于甲所在學校的評委把最高分給了甲;甲少拿一個分數,若少拿最低分,則有利;若少拿最高分,則不利;等等。以上各種想法都有道理,遺憾的是大部分學生僅僅停留在這些感性認識和文字說明上,沒能進一步引進數學模型和數學符號去進行理性的分析。如何衡量規則的公平性是本題的關鍵,也是建模的原則。很少有學生能夠明確提出這個原則,有些學生在第2問評分規則的修正中,提出“將甲所在學校的評委從評判組中剔除掉”,這種辦法違背實際的要求。有些學生被生活中一些現象誤導,提出“去掉最高分和最低分”的評分規則修正方法,而不去從數學的角度分析和研究。
通過對這道高中數學知識應用競賽題解答情況的分析,我們了解到學生數學建模意識和建模能力的現狀不容樂觀。學生在數學應用能力上存在的一些問題:
(1)數學閱讀能力差,誤解題意。
(2)數學建模方法需要提高。
(3)數學應用意識不盡人意數學建模意識很有待加強。
新課程標準給數學建模提出了更高的要求,也為中學數學建模的發展提供了很好的契機,相信隨著新課程的實施,我們高中生的數學建模意識和建模能力會有大的提高!
那么高中的數學建模教學應如何進行呢?數學建模的教學本身是一個不斷探索、不斷創新、不斷完善和提高的過程。不同于傳統的教學模式,數學建模課程指導思想是:以實驗室為基礎、以學生為中心、以問題為主線、以培養能力為目標來組織教學工作。通過教學使學生了解利用數學理論和方法去分折和解決問題的全過程,提高他們分折問題和解決問題的能力;提高他們學習數學的興趣和應用數學的意識與能力。數學建模以學生為主,教師利用一些事先設計好的問題,引導學生主動查閱文獻資料和學習新知識,鼓勵學生積極開展討論和辯論,主動探索解決之法。教學過程的重點是創造一個環境去誘導學生的學習欲望、培養他們的自學能力,增強他們的數學素質和創新能力,強調的是獲取新知識的能力,是解決問題的過程,而不是知識與結果。
(一)在教學中傳授學生初步的數學建模知識。
中學數學建模的目的旨在培養學生的數學應用意識,掌握數學建模的方法,為將來的學習、工作打下堅實的基礎。在教學時將數學建模中最基本的過程教給學生:利用現行的數學教材,向學生介紹一些常用的、典型的數學模型。如函數模型、不等式模型、數列模型、幾何模型、三角模型、方程模型等。教師應研究在各個教學章節中可引入哪些數學基本模型問題,如儲蓄問題、信用貸款問題可結合在數列教學中。教師可以通過教材中一些不大復雜的應用問題,帶著學生一起來完成數學化的過程,給學生一些數學應用和數學建模的初步體驗。
例如在學習了二次函數的最值問題后,通過下面的應用題讓學生懂得如何用數學建模的方法來解決實際問題。例:客房的定價問題。一個星級旅館有150個客房,經過一段時間的經營實踐,旅館經理得到了一些數據:每間客房定價為160元時,住房率為55%,每間客房定價為140元時,住房率為65%,
每間客房定價為120元時,住房率為75%,每間客房定價為100元時,住房率為85%。欲使旅館每天收入最高,每間客房應如何定價?
[簡化假設]
(1)每間客房最高定價為160元;
(2)設隨著房價的下降,住房率呈線性增長;
(3)設旅館每間客房定價相等。
[建立模型]
設y表示旅館一天的總收入,與160元相比每間客房降低的房價為x元。由假設(2)可得,每降價1元,住房率就增加。因此由可知于是問題轉化為:當時,y的最大值是多少?
[求解模型]
利用二次函數求最值可得到當x=25即住房定價為135元時,y取最大值(元),
[討論與驗證]
(1)容易驗證此收入在各種已知定價對應的收入中是最大的。如果為了便于管理,定價為140元也是可以的,因為此時它與最高收入只差元。
(2)如果定價為180元,住房率應為45%,相應的收入只有12150元,因此假設(1)是合理的。
(二)培養學生的數學應用意識,增強數學建模意識。
首先,學生的應用意識體現在以下兩個方面:
一是面對實際問題,能主動嘗試從數學的角度運用所學知識和方法尋求解決問題的策略,學習者在學習的過程中能夠認識到數學是有用的。
二是認識到現實生活中蘊含著大量的數學信息,數學在現實世界中有著廣泛的應用:生活中處處有數學,數學就在他的身邊。其次,關于如何培養學生的應用意識:在數學教學和對學生數學學習的指導中,介紹知識的來龍去脈時多與實際生活相聯系。例如,日常生活中存在著“不同形式的等量關系和不等量關系”以及“變量間的函數對應關系”、“變相間的非確切的相關關系”、“事物發生的可預測性,可能性大小”等,這些正是數學中引入“方程”、“不等式”、“函數”“變量間的線性相關”、“概率”的實際背景。另外鍛煉學生學會運用數學語言描述周圍世界出現的數學現象。數學是一種“世界通用語言”它能夠準確、清楚、間接地刻畫和描述日常生活中的許多現象。應讓學生養成運用數學語言進行交流的習慣。例如,當學生乘坐出租車時,他應能意識到付費與行駛時間或路程之間具有一定的函數關系。鼓勵學生運用數學建模解決實際問題。首先通過觀察分析、提煉出實際問題的數學模型,然后再把數學模型納入某知識系統去處理,當然這不但要求學生有一定的抽象能力,而且要有相當的觀察、分析、綜合、類比能力。學生的這種能力的獲得不是一朝一夕的事情,需要把數學建模意識貫穿在教學的始終,也就是要不斷的引導學生用數學思維的觀點去觀察、分析和表示各種事物關系、空間關系和數學信息,從紛繁復雜的具體問題中抽象出我們熟悉的數學模型,進而達到用數學模型來解決實際問題,使數學建模意識成為學生思考問題的方法和習慣。通過教師的潛移默化,經常滲透數學建模意識,學生可以從各類大量的建模問題中逐步領悟到數學建模的廣泛應用,從而激發學生去研究數學建模的興趣,提高他們運用數學知識進行建模的能力。
(三)在教學中注意聯系相關學科加以運用
在數學建模教學中應該重視選用數學與物理、化學、生物、美學等知識相結合的跨學科問題和大量與日常生活相聯系(如投資買賣、銀行儲蓄、測量、乘車、運動等方面)的數學問題,從其它學科中選擇應用題,通過構建模型,培養學生應用數學工具解決該學科難題的能力。例如,高中生物學科以描述性的語言為主,有的學生往往以為學好生物學是與數學沒有關系的。他們尚未樹立理科意識,缺乏理科思維。比如:他們不會用數學上的排列與組合來分析減數分裂過程配子的基因組成;也不會用數學上的概率的相加、相乘原理來解決一些遺傳病機率的計算等等。這些需要教師在平時相應的課堂內容教學中引導學生進行數學建模。因此我們在教學中應注意與其它學科的呼應,這不但可以幫助學生加深對其它學科的理解,也是培養學生建模意識的一個不可忽視的途徑。又例如教了正弦函數后,可引導學生用模型函數寫出物理中振動圖象或交流圖象的數學表達式。
最后,為了培養學生的建模意識,中學數學教師應首先需要提高自己的建模意識。中學數學教師除需要了解數學科學的發展歷史和發展動態之外,還需要不斷地學習一些新的數學建模理論,并且努力鉆研如何把中學數學知識應用于現實生活。中學教師只有通過對數學建模的系統學習和研究,才能準確地的把握數學建模問題的深度和難度,更好地推動中學數學建模教學的發展。
數學建模論文篇十五
(一) 教學觀念陳舊化
就當前高等數學的教育教學而言,高數老師對學生的計算能力、思考能力以及邏輯思維能力過于重視,一切以課本為基礎開展教學活動。作為一門充滿活力并讓人感到新奇的學科,由于教育觀念和思想的落后,課堂教學之中沒有穿插應用實例,在工作的時候學生不知道怎樣把問題解決,工作效率無法進一步提升,不僅如此,陳舊的教學理念和思想讓學生漸漸的失去學習的興趣和動力。
(二) 教學方法傳統化
教學方法的優秀與否在學生學習的過程中發揮著重要的作用,也直接影響著學生的學習成績。一般高數老師在授課的時候都是以課本的順次進行,也就意味著老師“由定義到定理”、“由習題到練習”,這種默守陳規的教學方式無法為學生營造活躍的學習氛圍,讓學生獨自學習、思考的能力進一步下降。這就要求教師致力于和諧課堂氛圍營造以及使用新穎的教育教學方法,讓學生在課堂中主動參與學習。
對學生的想象力、觀察力、發現、分析并解決問題的能力進行培養的過程中,數學建模發揮著重要的作用。最近幾年,國內出現很多以數學建模為主體的賽事活動以及教研活動,其在學生學習興趣的提升、激發學生主動學習的積極性上扮演著重要的角色,發揮著突出的作用,在高等數學教學中引入數學建模還能培養學生不畏困難的品質,培養踏實的工作精神,在協調學生學習的知識、實際應用能力等上有突出的作用。雖然國內高等院校大都開設了數學建模選修課或者培訓班,但是由于課程的要求和學生的認知水平差異較大,所以課程無法普及為大眾化的教育。如今,高等院校都在積極的尋找一種載體,對學生的整體素質進行培養,提升學生的創新精神以及創造力,讓學生滿足社會對復合型人才的需求,而最好的載體則是高等數學。
高等數學作為工科類學生的一門基礎課,由于其必修課的性質,把數學建模引入高等數學課堂中具有較廣的影響力。把數學建模思想滲入高等數學教學中,不僅能讓數學知識的本來面貌得以還原,更讓學生在日常中應用數學知識的能力得到很好的培養。數學建模要求學生在簡化、抽象、翻譯部分現實世界信息的過程中使用數學的語言以及工具,把內在的聯系使用圖形、表格等方式表現出來,以便于提升學生的表達能力。在實際的學習數學建模之后,需要檢驗現實的信息,確定最后的結果是否正確,通過這一過程中的鍛煉,學生在分析問題的過程中可以主動地、客觀的辯證的運用數學方法,最終得出解決問題的最好方法。因此,在高等數學教學中引入數學建模思想具有重要的意義。
(一) 在公式中使用建模思想
在高數教材中占有重要位置的是公式,也是要求學生必須掌握的內容之一。為了讓教師的教學效果進一步提升,在課堂上老師不僅要讓學生對計算的技巧進一步提升之余,還要和建模思想結合在一起,讓解題難度更容易,還讓課堂氛圍更活躍。為了讓學生對公式中使用建模思想理解的更透徹,老師還應該結合實例開展教學。
(二) 講解習題的時候使用數學模型的方式
課本例題使用建模思想進行解決,老師通過對例題的講解,很好的講述使用數學建模解決問題的方式,讓學生清醒的認識在解決問題的過程中怎樣使用數學建模。完成每章學習的內容之后,充分的利用時間為學生解疑答惑,以學生所學的專業情況和學生水平的高低選擇合適的例題,完成建模、解決問題的全部過程,提升學生解決問題的效率。
(三) 組織學生積極參加數學建模競賽
一般而言,在競賽中可以很好地鍛煉學生競爭意識以及獨立思考的能力。這就要求學校充分的利用資源并廣泛的宣傳,讓學生積極的參加競賽,在實踐中鍛煉學生的實際能力。在日常生活中使用數學建模解決問題,讓學生獨自思考,然后在競爭的過程中意識到自己的不足,今后也會努力學習,改正錯誤,提升自身的能力。
高等數學主要對學生從理論學習走向解決實際問題的能力進行培養,在高等數學中應用建模思想,促使學生對高數知識更充分的理解,學習的難度進一步降低,提升應用能力和探索能力。當前,在高等教學過程中引入建模思想還存在一定的不足,需要高校高等數學老師進行深入的研究和探索的同時也需要學生很好的配合,以便于今后的教學中進一步提升教學的質量。
[1] 謝鳳艷,楊永艷。 高等數學教學中融入數學建模思想[j]。 齊齊哈爾師范高等專科學校學報,2014 ( 02) : 119 —120.
[2] 李薇。 在高等數學教學中融入數學建模思想的探索與實踐[j]。 教育實踐與改革,2012 ( 04) : 177 —178,189.
[3] 楊四香。 淺析高等數學教學中數學建模思想的滲透 [j]。長春教育學院學報,2014 ( 30) : 89,95.
[4] 劉合財。 在高等數學教學中融入數學建模思想 [j]。 貴陽學院學報,2013 ( 03) : 63 —65.
數學建模論文篇十六
1.高職生的數學基礎相當薄弱,學習習慣不好,然而數學知識理論性強,計算繁瑣,并要求學生有足夠的耐心和較強的理性思維能力,這就會讓學生在學習數學相關知識時感覺有一定的難度。而另一方面,高職院校的課時量在盡量壓縮,數學應用方面的內容只是蜻蜓點水,根本無法廣泛而深入的涉及到位。例如,我校很多專業只開一個學期64課時的數學課,還有些專業甚至不開數學課,要建立一些比較高等的數學模型,高職學生的數學知識顯然不夠。
2.高職院校目前的教學方法多表現為填鴨式的教學法,過分強調嚴格的定理和抽象的邏輯思維,特別是運算技巧的訓練講得過于精細,考試形式單一。對于高職生來說,只要求他們會套用現成的公式及作一些簡單的計算就行,但是目前的教學不能使學生發揮自己的主觀能動性,也調動不了學生學習數學的興趣。
3.目前我校只開設了一門數學方面的公共選修課《數學建模》,一共16次課,僅僅靠課堂上講的內容讓學生來參加數學建模競賽遠遠不夠,另外,學生又要同時兼顧其他專業課程,因此學習效果不好。
4.組織數學建模賽前培訓的師資隊伍理論薄弱,只靠一兩個青年教師承擔培訓指導任務,缺乏參賽經驗豐富的老教師。
5.我校學生參加數學建模的積極性不高,我校已經連續參加幾年的數學建模競賽,但最多的也就5個隊,仍有多數學生稱未聽過有這項比賽,說明宣傳不是很到位。
6.目前組隊參賽的任務是交給基礎部來完成,而基礎部沒有學生,這就會造成找隊員困難的問題。
1.有利于培養學生綜合解決問題的能力
2.有利于促進高職數學課程的改革
大多數學校的高職數學課還是采用教師在上面講,學生在下面聽的方法,殊不知對于高職生而言,他們不但聽不懂,而且也不愿意聽,這就促進教師要改進教學方法,最好的方法是在機房里上課,老師把重要的理論思想教給學生之后,具體的計算方法可以讓學生利用軟件在電腦上操作,這樣既提高了學生的學習興趣,也提高了學生運用軟件的能力。
由于參加數學建模競賽可以激起學生學習數學的興趣,提高學生運用數學和計算機技術解決問題的綜合能力,激勵學生積極參加課外科技活動,開拓學生的知識視野,培養學生的創新意識和團隊合作意識,推動高等數學教學體系,教學內容和教學方法的改革。基于此,給出一些建議如下:
1.把數學建模的管理層次上升到學院,因為只有學院的大力支持,領導的高度重視才是提高高職學生數學建模能力的首要條件,而且只有學院的倡導和支持,各部門在宣傳數學建模方面時才會更加盡職盡責,不會出現推諉的現象。
2.成立數學建模協會小組,并有學校資金的支持,這樣可以把對數學建模有興趣的同學集中在一起,讓他們之間相互討論。建模協會應該有協會會長及其他管理者,這樣他們在運營平時的協會工作時才能各司其職,并有一定的組織性和紀律性。協會平時可以組織一些經典的數學建模的小案例以海報的形式展現在全校學生面前,或者是以有獎競猜的方法提高學生的參與性,這樣不僅可以達到宣傳數學建模的效果,也可以更好的提高學生的理性思維能力。
3.平時開設數學建模選修課,假期集中培訓備戰國賽,由于我校的數學建模課一般開設在大一的下學期,而技能大賽的比賽時間通常是選修課開課之前,這就導致了學生參加技能大賽時根本不知道數學建模比賽比的是什么。而且選修課只有一個老師教,力度太小。應該是大一開學就開始開設相關的數學建模選修課,幾個數學老師分工,每個數學老師講授一塊內容,這樣學生了解的知識面會更廣一些。另外,必須賽前集中培訓,因為平時的選修課只是讓學生了解,但并沒有讓他們系統的練習,所以賽前培訓就是重點講數學建模習題,并讓學生以三人一個小組模擬訓練。
5.建設一支指導數學建模競賽的師資隊伍。實際上,一個人的知識和視野畢竟是有限的,數學建模的指導教師不但需要有扎實的數學理論基礎,還需要有一定的軟件編程能力和較強的解決實際問題的能力,俗話說的好“團結就是力量”,因此,必須有一個指導數學建模競賽的隊伍,教師之間必須有很好的溝通,在合作中互幫互助,共同進步,從而促進學院數學建模活動的順利開展
6.學院每年選派數學建模指導老師去參加各類數學建模教師培訓班,組織他們去本市數學建模競賽組織好的兄弟院校去參觀學習,交流寶貴的建模經驗。同時,學校出臺一系列獎勵政策,在各類大型競賽中,學院應給獲獎的學生一定的物質獎勵,并在期末考評,評獎等方面給予優先考慮。