
冪函數性質總結
冪函數性質總結
正值性質
當α>0時,冪函數y=xα有下列性質:
a、圖像都經過點(1,1)(0,0);
b、函數的圖像在區間[0,+∞)上是增函數;
c、在第一象限內,α>1時,導數值逐漸增大;α=1時,導數為常數;0<α<1時,導數值逐漸減小,趨近于0(函數值遞增);
負值性質
當α<0時,冪函數y=xα有下列性質:
a、圖像都通過點(1,1);
b、圖像在區間(0,+∞)上是減函數;(內容補充:若為X-2,易得到其為偶函數。利用對稱性,對稱軸是y軸,可得其圖像在區間(-∞,0)上單調遞增。其余偶函數亦是如此)。
c、在第一象限內,有兩條漸近線(即坐標軸),自變量趨近0,函數值趨近+∞,自變量趨近+∞,函數值趨近0。
2冪函數定義域
1。當a為負數時,定義域為(-∞,0)和(0,+∞);
2。當a為零時,定義域為(-∞,0)和(0,+∞);
3。當a為正數時,定義域為(-∞,+∞)。
4。在(x2-2x)^(-0.5))^(-0.5)中,首先解x2-2x≠0,解出x≠0且x≠2,因此定義域為(-∞,0)∪(0,2)∪(2,+∞)。
當a為不同的數值時,冪函數的定義域的不同情況如下:
1。如果a為任意實數,則函數的定義域為大于0的所有實數;
2。如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根[據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;
3。如果同時q為奇數,則函數的定義域為不等于0的所有實數。
查看答案
單次付費有效 3.99 元
用于查看答案,單次有效 19.99元
包月VIP 9.99 元
用于查看答案,包月VIP無限次 49.99元