無(wú)論是身處學(xué)校還是步入社會(huì),大家都嘗試過(guò)寫(xiě)作吧,借助寫(xiě)作也可以提高我們的語(yǔ)言組織能力。相信許多人會(huì)覺(jué)得范文很難寫(xiě)?這里我整理了一些優(yōu)秀的范文,希望對(duì)大家有所幫助,下面我們就來(lái)了解一下吧。
的倍數(shù)的特征教學(xué)反思篇一
生:不能。那樣的話永遠(yuǎn)也研究不了,自然數(shù)太多了,是無(wú)限的。
師:那怎么辦呢?
(同桌討論)。
生:我們可以先研究小范圍里面的數(shù)。再推廣。
師:他的想法真棒!那我們就先確定一個(gè)比較小的范圍1-100,看看這100個(gè)數(shù)里2和5的倍數(shù)有哪些特征。
生:(凌亂地回答)是!
(同桌討論)。
生:可以找一個(gè)數(shù)看一看。
師:找怎樣的數(shù)呢?怎么看一看呢?誰(shuí)能說(shuō)得更明白呢?
生:就是找一個(gè)末尾是0或者5的數(shù),然后除以5看看,能不能除得盡。
師:哦,如果找不到這樣的數(shù),那說(shuō)明——在大范圍里面也適合。
如果找得到這樣的數(shù),那就是有了反例,說(shuō)明——在大范圍里面不適合。
(學(xué)生在本子上舉例)。
……。
師:我們舉了大量的例子,沒(méi)有找到反例。那現(xiàn)在我們可以得出怎樣的結(jié)論了呢?
生:所有5的倍數(shù),個(gè)位上的數(shù)字都是5或0。
師:誰(shuí)能完整地說(shuō)一說(shuō)呢?在怎樣的范圍內(nèi)呢?
生:在自然數(shù)中,個(gè)位上的數(shù)字是5或0,那這個(gè)數(shù)一定是5的倍數(shù)。
師:當(dāng)然,我們研究的是不是0的自然數(shù)。
……(練習(xí))。
(同桌討論,教師巡視并啟發(fā))。
生1:我們先確定了一個(gè)范圍。
師:為什么呢?
生1:因?yàn)椴淮_定范圍的話,數(shù)太多了,不可能研究得完。
生2:我們找到了這個(gè)范圍內(nèi)5的倍數(shù)特征后,就把范圍擴(kuò)大到所有不是0的自然數(shù),進(jìn)行了猜想。
生3:猜想后,我們又進(jìn)行了驗(yàn)證。
師:我們是用怎樣的方法進(jìn)行驗(yàn)證的呢?
生4:舉例。看看有沒(méi)有反例。
師:說(shuō)得真好,最后我們才得出了結(jié)論——在所有不是0的自然數(shù)中,5的倍數(shù)的特征是個(gè)位上5或0。然后運(yùn)用這些結(jié)論能快速判斷。
師:誰(shuí)能完整地把這個(gè)研究過(guò)程說(shuō)一說(shuō)呢?(同桌說(shuō)——全班說(shuō))。
……。
師:那2個(gè)倍數(shù)特征我們?cè)趺囱芯磕兀?/p>
生:也是先確定范圍,尋找一定范圍內(nèi)的2的倍數(shù)特征。然后擴(kuò)大范圍,舉例,尋找反例,最后得出結(jié)論。
師:那我們就用這樣的研究方法,四人一小組開(kāi)始研究2的倍數(shù)的特征。
……。
從以上的教學(xué)過(guò)程中,可以看到掌握2、5的倍數(shù)的特征不是本節(jié)課的唯一目標(biāo),在制定目標(biāo)的時(shí)候,還從數(shù)學(xué)研究方法這個(gè)方面著手,在學(xué)生掌握知識(shí)的同時(shí),更注重讓學(xué)生了解科學(xué)的數(shù)學(xué)研究的過(guò)程。
我們知道,一堂課的知識(shí)目標(biāo)是很容易達(dá)成的,但是如果要滲透數(shù)學(xué)思想方法或科學(xué)的研究方法,往往會(huì)給我們一線教師帶來(lái)很多困難。在這節(jié)課中,教師引導(dǎo)學(xué)生通過(guò)“猜想——驗(yàn)證——結(jié)論”三個(gè)流程進(jìn)行研究,最后得到正確的數(shù)學(xué)結(jié)果,并進(jìn)行應(yīng)用。
1、滲透“范圍”意識(shí)。
當(dāng)我們說(shuō)要研究2、5的倍數(shù)的特征時(shí),學(xué)生想當(dāng)然地會(huì)認(rèn)為只要一個(gè)數(shù)一個(gè)數(shù)地研究就可以了。如果讓他們實(shí)際操作,他們很可能會(huì)寫(xiě)了幾個(gè)數(shù)后,就下結(jié)論,當(dāng)然這時(shí)候他們下的結(jié)論也很可能是正確的。大部分老師在這樣的情況下,就會(huì)肯定學(xué)生的結(jié)論,然后進(jìn)行練習(xí)鞏固。
但是教師并沒(méi)有滿足于此,而是抱著科學(xué)嚴(yán)謹(jǐn)?shù)膽B(tài)度。僅僅幾個(gè)數(shù)就能得出結(jié)論了嗎?答案顯然是否定的,一項(xiàng)結(jié)論的得出不是這樣草率的。如果教師如此這般教學(xué),一次兩次不要緊,長(zhǎng)久以來(lái),學(xué)生也會(huì)形成草率的態(tài)度,以偏概全,缺乏一種科學(xué)的嚴(yán)謹(jǐn),這是很可怕的。
所以我們看到,首先教師引導(dǎo)學(xué)生確定了“小范圍”的意識(shí),在數(shù)據(jù)比較多的時(shí)候,我們可以先確定一個(gè)范圍,在有限的時(shí)間里研究這個(gè)范圍中的數(shù)的特征,得到在1-100這個(gè)范圍內(nèi)5的倍數(shù)的特征,個(gè)位上的數(shù)字是5或0。這時(shí)候教師沒(méi)有滿足于此,而是引導(dǎo)學(xué)生認(rèn)識(shí)到這個(gè)結(jié)論僅僅適用于1-100這個(gè)小范圍,是不是在所有不等于0的自然數(shù)中都使用呢?還需要研究。所以接下來(lái)在教師的引導(dǎo)下,學(xué)生開(kāi)始認(rèn)識(shí)到還要繼續(xù)拓展范圍,研究大于100的自然數(shù)中所有5的倍數(shù)是不是也是個(gè)位上的數(shù)字是5或0。只有進(jìn)行了研究,才能得到正確的結(jié)論,最后在學(xué)習(xí)和生活中進(jìn)行應(yīng)用。
在這一過(guò)程中,學(xué)生感受到了科學(xué)嚴(yán)謹(jǐn)?shù)膽B(tài)度,同時(shí)有了一定的“范圍”意識(shí),知道了在進(jìn)行一項(xiàng)數(shù)目巨大的研究過(guò)程中,可以從小范圍入手,得到一定的猜想,然后逐漸擴(kuò)范圍大,最后得出科學(xué)的結(jié)論。相信長(zhǎng)此以往,學(xué)生會(huì)逐漸明確范圍意識(shí),建立科學(xué)嚴(yán)謹(jǐn)?shù)膽B(tài)度的。
2、感受“猜想”與“結(jié)論”的不同。
在教學(xué)2、5的倍數(shù)的特征之前,教師找了幾個(gè)學(xué)生訪談,想了解學(xué)生學(xué)習(xí)的前在狀態(tài),當(dāng)然所找的學(xué)生是各種層次都有的。對(duì)于2、5的倍數(shù)的特征,應(yīng)該說(shuō)比較簡(jiǎn)單,所以中等學(xué)生和優(yōu)等生都已經(jīng)知道了它們的特征——2的倍數(shù)肯定是雙數(shù),5的倍數(shù)末尾是5或0,只有個(gè)別學(xué)困生一無(wú)所知。同時(shí)有個(gè)奇怪的現(xiàn)象,所有知道這個(gè)結(jié)論的同學(xué)都認(rèn)為這個(gè)結(jié)論非常正確,以后就能用這個(gè)結(jié)論來(lái)進(jìn)行判斷,不需要進(jìn)行驗(yàn)證,當(dāng)然他們的結(jié)論獲得也僅僅是“知道”的過(guò)程,沒(méi)有經(jīng)歷“探究”過(guò)程。如果長(zhǎng)此以往,學(xué)生僅僅是知識(shí)的接受者,而不是知識(shí)的探究者,以后將只習(xí)慣于被動(dòng)接受,而不會(huì)主動(dòng)發(fā)現(xiàn)。
有了這樣的猜想,最后通過(guò)舉例的方法驗(yàn)證后,學(xué)生沒(méi)有找到反例,這時(shí)教師才告訴學(xué)生,一開(kāi)始的猜想現(xiàn)在變成了結(jié)論。雖然同樣是一句話,不同的時(shí)候有不同的界定,沒(méi)有經(jīng)過(guò)驗(yàn)證前,只是猜想;只有研究后,猜想才可能變成結(jié)論。
相信學(xué)生不斷經(jīng)歷這種過(guò)程后,他們才會(huì)具備科學(xué)的態(tài)度,才會(huì)學(xué)會(huì)對(duì)自己所說(shuō)的話負(fù)責(zé),才不會(huì)貿(mào)然下結(jié)論,當(dāng)然我們教師也要鼓勵(lì)學(xué)生大膽猜想。
從這節(jié)課中,我們看到,當(dāng)學(xué)生擴(kuò)大范圍,研究比100大的5的倍數(shù)的特征時(shí),教師就引導(dǎo)可以用舉例的方法來(lái)研究,尋找有沒(méi)有不符合這一特征的例子,如果有,說(shuō)明一開(kāi)始的猜想是錯(cuò)誤的;全班舉了無(wú)數(shù)個(gè)例子,如果沒(méi)有,那么在小學(xué)階段,可以認(rèn)為是正確的。這樣,當(dāng)下節(jié)課研究3的倍數(shù)的特征時(shí),學(xué)生就會(huì)大膽猜想,并有方法來(lái)驗(yàn)證自己的猜想了。
隨著時(shí)代的發(fā)展,隨著新課改的不斷深入,我們教師在制定教學(xué)目標(biāo)時(shí),不要再僅僅關(guān)注學(xué)生知識(shí)目標(biāo),更重要的是要關(guān)注學(xué)生的能力目標(biāo),只有從小培養(yǎng),從小滲透,那么我們學(xué)生對(duì)數(shù)學(xué)的認(rèn)識(shí)才會(huì)更深刻,也才會(huì)在數(shù)學(xué)上有更大的造詣。
的倍數(shù)的特征教學(xué)反思篇二
這一周我和學(xué)生一起學(xué)習(xí)了《2、5的倍數(shù)的特征》這一課,教學(xué)時(shí)通過(guò)游戲的情境很好地激發(fā)學(xué)生的求知欲,探究新知的熱情,學(xué)生借助“百數(shù)表”分別直觀地找出2和5的倍數(shù),通過(guò)合作和獨(dú)立思考的方式概括出2和5的倍數(shù)特征,再舉例比100大的'數(shù)加以驗(yàn)證,以“猜想——驗(yàn)證——結(jié)論”的學(xué)習(xí)方式符合學(xué)生的認(rèn)知特點(diǎn),結(jié)合2的倍數(shù)特征,進(jìn)而讓學(xué)生認(rèn)識(shí)、理解奇數(shù)和偶數(shù)含義,再通過(guò)游戲獲得‘既是2又是5的倍數(shù)特征’讓學(xué)生應(yīng)用所學(xué)的知識(shí)解決數(shù)學(xué)簡(jiǎn)單的生活問(wèn)題,達(dá)到了教學(xué)目標(biāo)。
學(xué)生在學(xué)習(xí)中,體驗(yàn)了探索的成功樂(lè)趣,也對(duì)數(shù)學(xué)產(chǎn)生的興趣。對(duì)學(xué)習(xí)3的倍數(shù)打下了基礎(chǔ)。當(dāng)然本節(jié)課的教學(xué)不失為一堂指導(dǎo)學(xué)生進(jìn)行探究性學(xué)習(xí)的課,但我總怕學(xué)生在這節(jié)課里不能很好的接受知識(shí),所以在個(gè)別應(yīng)放手的地方卻還在牽著學(xué)生走。總結(jié)性的語(yǔ)言也顯得有些不夠。在以后的教學(xué)中應(yīng)力爭(zhēng)避免此種情況的發(fā)生也有一部分學(xué)生容易混淆倍數(shù)的特征。這還有需要我們進(jìn)一步的學(xué)習(xí)鞏固中改變。我相信只要有信心,有方法,什么困難我們都能克服的。
的倍數(shù)的特征教學(xué)反思篇三
在學(xué)習(xí)這個(gè)內(nèi)容之前,學(xué)生已經(jīng)學(xué)習(xí)了2、5的倍數(shù)的特征。但是3的倍數(shù)的特征與錢不同,2、5的倍數(shù)的特征是看個(gè)數(shù)上的數(shù)字,而3的倍數(shù)的特征不再是看個(gè)位上的數(shù)字,而是看各位上的數(shù)字之和。在學(xué)習(xí)了2、5的倍數(shù)的特征的.前提下來(lái)學(xué)習(xí)3的倍數(shù)的特征很容易會(huì)跟2、5的一樣。根據(jù)這一初步的認(rèn)識(shí)沖突,在課堂上我采取了以下教學(xué)措施。
與教學(xué)“2、5的倍數(shù)特征”類似,我要求學(xué)生課前做好充分的預(yù)習(xí)工作:在附頁(yè)的方格紙上寫(xiě)出1-100的數(shù),找出3的倍數(shù)并涂上顏色,并觀察發(fā)現(xiàn)有什么特征,如下:
復(fù)習(xí)引入,設(shè)置懸念。
出示:用3,5,6數(shù)字卡片擺成符合要求的三位數(shù)依次出示:
擺成2的倍數(shù)(學(xué)生回答356536并說(shuō)原因)。
擺成5的倍數(shù)(學(xué)生回答365635并說(shuō)原因)。
【設(shè)計(jì)意圖:回顧2,5的倍數(shù)的特征】。
擺成3的倍數(shù)(學(xué)生回答563,653,356,536并說(shuō)原因:個(gè)位上是3、6;有學(xué)生提出質(zhì)疑,產(chǎn)生沖突)。
問(wèn):個(gè)位上是3,6或9的數(shù)是不是3的倍數(shù)?
學(xué)生驗(yàn)證,發(fā)現(xiàn)這四個(gè)數(shù)都不是3的倍數(shù)。
問(wèn):3的倍數(shù)是不是看各位上的數(shù)呢它到底有什么特征?
合作探究。
在100以內(nèi)的數(shù)中,任意選取幾個(gè)3的倍數(shù)的數(shù),小組合作完成表格:
3的倍數(shù)有。
各數(shù)位上,數(shù)的和。
和是不是3的倍數(shù)。
12。
1+2=3。
是
匯報(bào)交流:你發(fā)現(xiàn)了什么?
得出結(jié)論:一個(gè)數(shù)各數(shù)位上數(shù)的和是3的倍數(shù),這個(gè)數(shù)就是3的倍數(shù)。例如:54,因?yàn)?+4=9,9是3的倍數(shù),所以54是3的倍數(shù)。
1,基礎(chǔ)練習(xí):
(1)判斷下列數(shù)是不是3的倍數(shù)(4213426878)。
學(xué)生回答:例。
42是3的倍數(shù),134不是3的倍數(shù),
因?yàn)?+2=6,6是3的倍數(shù),因?yàn)?+3+4=8,8-不是3的倍數(shù)。
所以42是3的倍數(shù)。所以134不是3的倍數(shù)。
(2)師生互動(dòng)猜數(shù)游戲:老師說(shuō)一個(gè)數(shù),學(xué)生判斷是否為3的倍數(shù);學(xué)生說(shuō)一個(gè)數(shù),老師判斷;同桌判斷,男女生判斷。
(3)在下面的方框里填上一個(gè)數(shù)字,使這個(gè)數(shù)是3的倍數(shù)。
2,有關(guān)于2,5,3的倍數(shù)的特征的比較,綜合練習(xí)。
本節(jié)課能從認(rèn)識(shí)沖突上找到突破點(diǎn),再小組合作通過(guò)填寫(xiě)表格引導(dǎo)學(xué)生去發(fā)現(xiàn)3的倍數(shù)的特征,學(xué)生能夠清晰的區(qū)分和判別3的倍數(shù),并與2、5的倍數(shù)作比較,真正理解和辨別這幾個(gè)數(shù)的倍數(shù)的特征,學(xué)生的掌握情況還是不錯(cuò)的。
的倍數(shù)的特征教學(xué)反思篇四
這節(jié)課新授知識(shí)較為簡(jiǎn)單,很適合讓學(xué)生預(yù)習(xí)。所以課前我印制了百數(shù)表讓學(xué)生圈出5的倍數(shù)和2的倍數(shù),并設(shè)計(jì)了兩個(gè)問(wèn)題:1、觀察5的倍數(shù),想想這些數(shù)有什么特征?2、觀察2的倍數(shù),又有什么特征呢?一上課就小組交流這兩個(gè)問(wèn)題,同學(xué)們興致高漲,足以看出預(yù)習(xí)效果是很好的。通過(guò)這樣的教學(xué),節(jié)省了很多時(shí)間,課堂作業(yè)可以當(dāng)堂完成。從作業(yè)情況來(lái)看,大部分同學(xué)做得還不錯(cuò)。一小部分同學(xué)運(yùn)用知識(shí)的能力欠佳,比如:寫(xiě)出5個(gè)奇數(shù)是這樣寫(xiě)的:5、15、25、35、45.雖然這樣寫(xiě)不能算錯(cuò),但是這些學(xué)生可能對(duì)5的倍數(shù)與奇數(shù)的概念有些混淆。
在0、1、5、8,四張卡片中選出兩張數(shù)字卡片,按要求組成兩位數(shù)。
1、組成的數(shù)是偶數(shù)的有()。
2、組成的數(shù)是5的倍數(shù)的有()。
3、組成的數(shù)既是2的倍數(shù)、又是5的倍數(shù)的有()。
這道題部分同學(xué)答案不全,想想還是正常的,其實(shí)這道題對(duì)于中等以下的學(xué)生來(lái)說(shuō)確實(shí)有難度的。
的倍數(shù)的特征教學(xué)反思篇五
在教學(xué)中,當(dāng)學(xué)生找到百數(shù)表內(nèi)5的倍數(shù)特征時(shí),我追問(wèn)學(xué)生,“是不是在所有的自然數(shù)中,5的倍數(shù)都有這個(gè)特征呢?”學(xué)生異口同聲地都認(rèn)為是。這里就需要教師幫助學(xué)生養(yǎng)成嚴(yán)謹(jǐn)科學(xué)的學(xué)習(xí)態(tài)度。我告訴學(xué)生是不是有這個(gè)特征,我們沒(méi)有研究過(guò),只是我們的猜想。還需要我們進(jìn)一步去驗(yàn)證。大部分學(xué)生還是比較認(rèn)可的。沒(méi)有經(jīng)過(guò)研究,怎么能知道是呢?有了這樣的猜想,最后通過(guò)舉例的方法驗(yàn)證后,學(xué)生沒(méi)有找到反例,這時(shí)我才告訴學(xué)生,一開(kāi)始的猜想現(xiàn)在變成了結(jié)論。雖然同樣是一句話,不同的時(shí)候有不同的界定,沒(méi)有經(jīng)過(guò)驗(yàn)證前,只是猜想;只有驗(yàn)證后,猜想才可能變成結(jié)論。相信學(xué)生不斷經(jīng)歷這種過(guò)程后,他們才會(huì)具備科學(xué)的態(tài)度,才會(huì)學(xué)會(huì)對(duì)自己所說(shuō)的話負(fù)責(zé),才不會(huì)貿(mào)然下結(jié)論。
這節(jié)課中,當(dāng)學(xué)生研究出5的倍數(shù)的特征后,我引導(dǎo)學(xué)生來(lái)回憶。我們是怎樣來(lái)研究5的倍數(shù)的特征的?讓學(xué)生體驗(yàn)經(jīng)歷“找數(shù)——觀察——猜想——百數(shù)表中驗(yàn)證——更大數(shù)驗(yàn)證——結(jié)論”這一研究過(guò)程,然后讓學(xué)生獨(dú)立去研究2的倍數(shù)的特征,再次體驗(yàn)2的倍數(shù)的特征研究過(guò)程,我想學(xué)生就有了更完整的體驗(yàn)。
整節(jié)課學(xué)生經(jīng)歷了“觀察,動(dòng)手,發(fā)現(xiàn)規(guī)律、驗(yàn)證規(guī)律、得出結(jié)論,運(yùn)用規(guī)律”的過(guò)程。著名數(shù)學(xué)家波利亞說(shuō)過(guò):“學(xué)習(xí)任何知識(shí)的最佳途徑是由學(xué)生自己去發(fā)現(xiàn)。因?yàn)檫@種發(fā)現(xiàn),理解最深刻,也最容易掌握其中的`內(nèi)在規(guī)律聯(lián)系。”離開(kāi)了學(xué)生的學(xué)習(xí)活動(dòng),學(xué)生的發(fā)展將是空中樓閣。通過(guò)活動(dòng)落實(shí)教學(xué)任務(wù),讓學(xué)生用自己的思維方式去探究,自己去體驗(yàn),能有效促進(jìn)學(xué)生主體的發(fā)展。學(xué)生經(jīng)歷和感悟“觀察,動(dòng)手實(shí)踐,發(fā)現(xiàn)規(guī)律、驗(yàn)證規(guī)律、得出結(jié)論”的學(xué)習(xí)過(guò)程比學(xué)到的數(shù)學(xué)知識(shí)更有價(jià)值。如果教學(xué)中能長(zhǎng)期堅(jiān)持運(yùn)用這些學(xué)習(xí)方法,而且學(xué)生一旦形成自己自主的學(xué)習(xí)方式,那將是非常可貴的。
1.2和5倍數(shù)的特征,都在個(gè)位數(shù),學(xué)生極易理解和掌握,奇數(shù)、偶數(shù)的概念,學(xué)生掌握也并不困難,所以這部分內(nèi)容的學(xué)習(xí)從學(xué)生已有的知識(shí)經(jīng)驗(yàn)出發(fā),創(chuàng)設(shè)有助于學(xué)生自主學(xué)習(xí)、合作交流的情境,使學(xué)生經(jīng)歷觀察、操作、歸納、類比、猜想、交流、反思等數(shù)學(xué)活動(dòng),獲得基本的數(shù)學(xué)知識(shí)和技能,發(fā)展思維能力,激發(fā)學(xué)習(xí)的興趣,增強(qiáng)學(xué)好數(shù)學(xué)的信心。出現(xiàn)疑難問(wèn)題或意見(jiàn)不一時(shí),通過(guò)小組或集體討論解決,教師發(fā)揮引導(dǎo)的作用,消除學(xué)生的疑惑;關(guān)注學(xué)生的個(gè)體差異,使不同層次的學(xué)生在練習(xí)中獲得不同的發(fā)展,體驗(yàn)成功的喜悅。
2.學(xué)習(xí)方法的指導(dǎo)非常必要,讓學(xué)生感受數(shù)學(xué)是一門嚴(yán)謹(jǐn)?shù)膶W(xué)科,數(shù)學(xué)研究的方法就在平時(shí)的學(xué)習(xí)中,并不神秘,為學(xué)生以后的數(shù)學(xué)研究打下良好的基礎(chǔ)。
的倍數(shù)的特征教學(xué)反思篇六
今天我教學(xué)了3的倍數(shù)的特征,我首先復(fù)習(xí)2、5的倍數(shù)的特征,然后我出示了幾個(gè)不同的四位數(shù),問(wèn)生:誰(shuí)能很快判斷出哪些是3的倍數(shù)?想知道有什么竅門嗎?這們引入課題很順當(dāng),學(xué)生也很有興趣。下面,我先讓學(xué)生寫(xiě)出50以內(nèi)3的倍數(shù),再觀察:3的倍數(shù)有什么特點(diǎn)?學(xué)生一時(shí)很難發(fā)現(xiàn),仍從個(gè)位上的數(shù)去觀察,但馬上被其他同學(xué)否定,當(dāng)時(shí)我心里有點(diǎn)擔(dān)心怎么看不來(lái)呢?,我啟發(fā)學(xué)生再看看個(gè)位和十位上的數(shù),通過(guò)交流后,在部分學(xué)生馬上發(fā)現(xiàn)把每個(gè)數(shù)的數(shù)字加起來(lái)的和除以3都是正好除的,我讓學(xué)生用這個(gè)發(fā)現(xiàn)對(duì)書(shū)上第76頁(yè)的表格100以內(nèi)的數(shù)進(jìn)行驗(yàn)證一下,學(xué)生驗(yàn)證后我又讓學(xué)生從100以外的數(shù)來(lái)驗(yàn)證。從而得出了3的倍數(shù)的特征。再通過(guò)用1、2、6可以寫(xiě)成哪些三位數(shù)?這些三位數(shù)是3的倍數(shù)嗎?由此有什么發(fā)現(xiàn)?讓學(xué)生進(jìn)一步明白3的倍數(shù)跟數(shù)字的位置沒(méi)有關(guān)系,只跟各位上數(shù)的和有關(guān)系。這樣學(xué)生在完成想想做做第5題時(shí)學(xué)生思考時(shí)就不會(huì)漏寫(xiě)了。最后,通過(guò)后面的練習(xí),我覺(jué)得在教學(xué)某些知識(shí)時(shí),最好老師不要輕易下結(jié)論,只有讓他們自己在反復(fù)實(shí)踐中自己得出結(jié)論,才能牢固地掌握知識(shí)。
的倍數(shù)的特征教學(xué)反思篇七
《3的倍數(shù)的特征》的教學(xué)是五年級(jí)數(shù)學(xué)上冊(cè)第三單元“因數(shù)與倍數(shù)”中一個(gè)重要知識(shí)點(diǎn),是學(xué)生在學(xué)習(xí)了2和5的倍數(shù)特征之后的新內(nèi)容。
3的倍數(shù)的特征與2和5的倍數(shù)的特征有很大差別,2和5的倍數(shù)的特征僅僅體現(xiàn)在個(gè)位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個(gè)位上的數(shù)來(lái)判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來(lái)判斷,學(xué)生理解起來(lái)有一定的困難。我在本節(jié)課設(shè)計(jì)理念上,突出以學(xué)生為主體,教師為主導(dǎo),方法為主線的原則,從現(xiàn)象到本質(zhì),從質(zhì)疑到解疑。當(dāng)然本節(jié)課也存在很多問(wèn)題,下面我進(jìn)行做幾點(diǎn)反思。
在導(dǎo)入環(huán)節(jié),我通過(guò)復(fù)習(xí)舊知識(shí)進(jìn)行“熱身”。由于學(xué)生已經(jīng)掌握了2和5倍數(shù)的特征,知道只要看一個(gè)數(shù)的個(gè)位就能判斷一個(gè)數(shù)是不是2或5的倍數(shù),因此在學(xué)習(xí)3的倍數(shù)特征時(shí),自然會(huì)把“看個(gè)位”這一方法遷移過(guò)來(lái),盡管是負(fù)遷移。實(shí)際上,鮮明的沖突讓學(xué)生發(fā)現(xiàn)卻不是這樣,于是新舊知識(shí)間的矛盾沖突使學(xué)生產(chǎn)生了困惑,有了新舊知識(shí)的矛盾沖突,就能激發(fā)起學(xué)生探究的愿望,這樣有利于學(xué)生對(duì)新知識(shí)的掌握,有效的將新知識(shí)納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識(shí)和能力。
猜想3的倍數(shù)特征是基礎(chǔ),在學(xué)生得出猜想后,我便引導(dǎo)學(xué)生找出百數(shù)表中3的倍數(shù)去驗(yàn)證,并在驗(yàn)證中推翻了剛才的猜想。驗(yàn)證也是有技巧的,30以內(nèi)即可發(fā)現(xiàn)3的倍數(shù)中,個(gè)位上可能是10個(gè)數(shù)字中的任何一個(gè),之前的判斷已經(jīng)站不住腳。之后繼續(xù)探究,在100以內(nèi),基本可以發(fā)現(xiàn)規(guī)律,但為了嚴(yán)謹(jǐn),必須跳出百數(shù)表,在100以上的數(shù)中去驗(yàn)證這個(gè)規(guī)律。最后,引導(dǎo)學(xué)生理解這個(gè)結(jié)論背后的原理,為什么它的規(guī)律和之前的規(guī)律不一樣?這樣一來(lái),學(xué)生不僅學(xué)會(huì)本節(jié)課知識(shí),更掌握了科學(xué)的探究方法。
本節(jié)課的目標(biāo)定位上,我考慮到學(xué)生的已有認(rèn)知基礎(chǔ),我決定引導(dǎo)學(xué)生探索3的倍數(shù)的特征背后的道理。這一嘗試建立在我對(duì)學(xué)生學(xué)情把握的基礎(chǔ)上,因?yàn)?的倍數(shù)的特征的結(jié)論一但得出,運(yùn)用起來(lái)沒(méi)有難度,后面的練習(xí)往往成了“休閑時(shí)間”,而進(jìn)一步提升探索難度,無(wú)疑是開(kāi)發(fā)思維的良好契機(jī)。我運(yùn)用數(shù)形結(jié)合的.方法逐步深入,最后還是把話語(yǔ)權(quán)留給學(xué)生,這樣就給予不同學(xué)生各自適應(yīng)的個(gè)性化學(xué)習(xí)方略,真正做到了讓每位同學(xué)在數(shù)學(xué)上都得到發(fā)展。
的倍數(shù)的特征教學(xué)反思篇八
《3的倍數(shù)的特征》看似一節(jié)知識(shí)簡(jiǎn)單的課,但從教學(xué)實(shí)際來(lái)看,是我想得過(guò)于簡(jiǎn)單了,教師注重的不應(yīng)該僅僅是對(duì)知識(shí)的掌握,更應(yīng)該使學(xué)生站在跳板上學(xué)習(xí)數(shù)學(xué),關(guān)注數(shù)學(xué)思維的發(fā)展。
新的課程理念要求我們?cè)诮虒W(xué)中盡可能地為學(xué)生提供一個(gè)自主、合作、探究機(jī)會(huì),其宗旨也就在于培養(yǎng)學(xué)生在實(shí)際的學(xué)習(xí)活動(dòng)中,善于發(fā)現(xiàn)問(wèn)題和提出問(wèn)題的能力,靈活運(yùn)用知識(shí)去解決問(wèn)題的能力,在研究和解決問(wèn)題的過(guò)程中學(xué)會(huì)合作。3的倍數(shù)的特征,有規(guī)律可循,容易上成機(jī)械刻板、枯燥無(wú)味的課,學(xué)生雖能死套規(guī)律判斷,但學(xué)生的能力沒(méi)能培養(yǎng),智力得不到開(kāi)發(fā)。本課的設(shè)計(jì)采用了啟發(fā)與發(fā)現(xiàn)相結(jié)合的教學(xué)方法,激勵(lì)學(xué)生大膽猜想,動(dòng)手實(shí)踐,去發(fā)現(xiàn)規(guī)律,形成技能,升華至應(yīng)用于生活。
2、5的倍數(shù)特征一樣,看一個(gè)數(shù)的末尾了,引導(dǎo)學(xué)生是不是要看這個(gè)數(shù)其它的數(shù)位上的數(shù)呢?學(xué)生發(fā)現(xiàn)也不是很難。教材中有提示,學(xué)生回家預(yù)習(xí)后也會(huì)清楚敘述出3的倍數(shù)特征是一個(gè)數(shù)各個(gè)數(shù)位上數(shù)字相加的和。找準(zhǔn)知識(shí)之間的沖突并巧妙激發(fā)出來(lái),這是一節(jié)課的出彩之處,剛開(kāi)始我們先采用課本上百數(shù)表來(lái)研究,結(jié)果在一個(gè)班實(shí)踐后認(rèn)為效果并不是很理想,由于數(shù)太多,讓學(xué)生觀察3的倍數(shù)的這些數(shù)時(shí),并從中找出相同的地方,結(jié)果,很多同學(xué)找了與本節(jié)課毫無(wú)關(guān)系的東西,浪費(fèi)了很多時(shí)間。在評(píng)課的時(shí)候,我們又討論是不是找一些數(shù)代表百數(shù)表,于是我設(shè)計(jì)了一個(gè)表格,讓學(xué)生用除法計(jì)算的方法找到3的倍數(shù)的特征,并觀察這些數(shù),這些數(shù)的個(gè)位分別從0到9都有,讓學(xué)生知道3的倍數(shù)的特征跟數(shù)的個(gè)位沒(méi)有關(guān)系,然后從中又把像45和54,75和57,123和321等特殊的數(shù)單獨(dú)展示出來(lái),讓學(xué)生觀察從中找出規(guī)律。結(jié)果我又重新上了這節(jié)課,效果比上節(jié)課要好。
這節(jié)課結(jié)束后,我感覺(jué)最大的缺憾之處,最后總結(jié)3的倍數(shù)特征時(shí),應(yīng)放手讓孩子們多說(shuō),說(shuō)透,這樣更有助于鍛煉孩子的概括歸納能力。而練習(xí)題方面,也應(yīng)形式面多樣化,如用卡片練習(xí)判斷,或通過(guò)打手勢(shì)的方法或先聽(tīng)老師——這樣效率更高,課堂氛圍好,課堂不是同步,學(xué)生的發(fā)展始終是教學(xué)的落腳點(diǎn)。我們的教學(xué)應(yīng)著眼于學(xué)生對(duì)解決問(wèn)題方法的感悟,這樣才可獲得最佳的效果。
的倍數(shù)的特征教學(xué)反思篇九
《3的倍數(shù)的特征》是五年級(jí)下冊(cè)數(shù)學(xué)第二單元“因數(shù)與倍數(shù)”中的一個(gè)知識(shí)點(diǎn),是在學(xué)生已經(jīng)認(rèn)識(shí)倍數(shù)和因數(shù)、2和5倍數(shù)的特征的基礎(chǔ)上進(jìn)行教學(xué)的。由于2、5的倍數(shù)的特征從數(shù)的表面的特點(diǎn)就可以很容易看出——根據(jù)個(gè)位數(shù)的特點(diǎn)就可以判斷出來(lái)。但是3的倍數(shù)的特征卻不能只從個(gè)位上的數(shù)來(lái)判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來(lái)判斷,學(xué)生理解起來(lái)有一定的困難。
因而在《3的倍數(shù)的特征》的開(kāi)始,我先復(fù)習(xí)了2、5的倍數(shù)的特征,然后學(xué)生猜一猜什么樣的數(shù)是3的倍數(shù),學(xué)生自然而然地會(huì)將“2.5的倍數(shù)的特征”遷移到“3的倍數(shù)特征的問(wèn)題中,得出:個(gè)位上是3、6、9的數(shù)是3的倍數(shù),后被學(xué)生補(bǔ)充到“個(gè)位上是0—9的任何一個(gè)數(shù)字都有可能是3的倍數(shù),”其特征不明顯,也就是說(shuō)3的倍數(shù)和一個(gè)數(shù)的個(gè)位數(shù)沒(méi)有關(guān)系,因此要從另外的角度來(lái)觀察和思考。在問(wèn)題情境中讓學(xué)生產(chǎn)生認(rèn)知沖突產(chǎn)生疑問(wèn),激發(fā)強(qiáng)烈的探究欲望。接著提供給每位學(xué)生一張百數(shù)表,讓他們?nèi)Τ鏊?的倍數(shù),拋出問(wèn)題:把3的倍數(shù)的各位上的數(shù)相加,看看你有什么發(fā)現(xiàn),引導(dǎo)學(xué)生換角度思考3的倍數(shù)特征。接下來(lái),經(jīng)過(guò)進(jìn)一步提示,引導(dǎo)學(xué)生觀察各位上數(shù)的和,發(fā)現(xiàn)各位上的和是3的倍數(shù)。于是,形成新的猜想:一個(gè)數(shù)如果是3的倍數(shù),那么它各位上數(shù)的和也是3的倍數(shù)。
為了驗(yàn)證這一猜想,我補(bǔ)充了一些其他的數(shù),如49×3=147,166×3=498等,使學(xué)生進(jìn)一步確認(rèn)這一結(jié)論的正確性。還可以任意寫(xiě)一個(gè)數(shù),利用這一結(jié)論來(lái)驗(yàn)證,如3697,3+6+9+7=25,25不是3的倍數(shù),而3697÷3也不能得到整數(shù)商,因此,它不是3的倍數(shù)。通過(guò)這樣的方式也使學(xué)生認(rèn)識(shí)到:找出某個(gè)規(guī)律后,還要找出一些正面的、反面的例子進(jìn)行檢驗(yàn),看是不是普遍適用。
為了使學(xué)生更好地掌握3的倍數(shù)的特征,進(jìn)行課堂練習(xí)時(shí),我還把一些數(shù)各個(gè)數(shù)位上的數(shù)經(jīng)過(guò)不同的排列,再讓學(xué)生判斷,以加深對(duì)“各位上數(shù)的和是3的倍數(shù)”的理解。如完成“做一做”第1題時(shí),學(xué)生判斷完45是3的倍數(shù)后,教師可以再讓學(xué)生判斷一下54是不是3的倍數(shù)。
利用2、5、3的倍數(shù)的特征來(lái)判斷一個(gè)數(shù)是不是2、5或3的倍數(shù),其方法是比較容易掌握的,但要形成較好的數(shù)感,達(dá)到熟練判斷的程度,也不是一、兩節(jié)課所能解決的,還需要進(jìn)行較多的練習(xí)進(jìn)行鞏固。
這節(jié)課結(jié)束后,我感到自主學(xué)習(xí)和合作探究是這節(jié)課中最重要的兩種學(xué)習(xí)方式,學(xué)生通過(guò)自主選擇研究?jī)?nèi)容,舉例驗(yàn)證等獨(dú)立思考和小組討論,相互質(zhì)疑等合作探究活動(dòng),獲得了數(shù)學(xué)知識(shí)。學(xué)生的學(xué)習(xí)能動(dòng)性和潛在能力得到了激發(fā)。在自主探索的過(guò)程中,學(xué)生體驗(yàn)到了學(xué)習(xí)成功的愉悅,同時(shí)也促進(jìn)了自身的發(fā)展。但最大的缺憾之處,最后總結(jié)3的倍數(shù)特征時(shí),應(yīng)放手讓孩子們多說(shuō),說(shuō)透,這樣更有助于鍛煉孩子的概括歸納能力。而練習(xí)題方面,也應(yīng)形式面多樣化。
的倍數(shù)的特征教學(xué)反思篇十
3的倍數(shù)的特征比較隱蔽,學(xué)生一般想不到從“各位上數(shù)的和”去研究,本課注重引導(dǎo)學(xué)生經(jīng)歷探索的過(guò)程。上課開(kāi)始先讓學(xué)生回顧舊知,2的倍數(shù)和5的倍數(shù)有什么特征,學(xué)生們發(fā)現(xiàn)都只要看一個(gè)數(shù)個(gè)位上的數(shù)就行了,于是很順地設(shè)下了陷阱:同學(xué)們,那猜猜看3的倍數(shù)有什么特征呢?猜測(cè)是一種常用的數(shù)學(xué)思考方法,讓學(xué)生猜測(cè)3的倍數(shù)有什么特征,能較好地調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性。由于受2的倍數(shù)和5的倍數(shù)的特征的影響,有學(xué)生很自然猜測(cè)到:“個(gè)位上是0,3,6,9的數(shù)一定是3的倍數(shù)”,還有學(xué)生猜測(cè):“各位上的數(shù)字加起來(lái)是3,6,9一定是3的倍數(shù)”,能想到這點(diǎn)應(yīng)該說(shuō)是了不起的。本課到這里都很順利,因?yàn)橥耆谖业念A(yù)設(shè)之中。
下面進(jìn)入驗(yàn)證環(huán)節(jié),先學(xué)生判斷自己的學(xué)號(hào)是不是3的倍數(shù),再在這些學(xué)號(hào)中挑出個(gè)位上是0,3,6,9的數(shù),通過(guò)交流這些數(shù)不一定都是3的倍數(shù)。學(xué)生初步發(fā)現(xiàn)了3的倍數(shù)的特征與2和5的倍數(shù)不同,不表現(xiàn)在數(shù)的個(gè)位上,那3的倍數(shù)究竟與什么有關(guān)系呢。于是進(jìn)入到動(dòng)手操作環(huán)節(jié),在此基礎(chǔ)上,利用計(jì)數(shù)器轉(zhuǎn)移探索的方向,讓學(xué)生用3顆算珠在計(jì)數(shù)器上任意擺數(shù),得出結(jié)果:擺出的數(shù)都是3的倍數(shù),到這里有幾個(gè)學(xué)生顯得很興奮。隨后用5顆算珠實(shí)驗(yàn),發(fā)現(xiàn)擺出的數(shù)都不是3的倍數(shù),到這里學(xué)生中已經(jīng)有一些議論,他們都有了發(fā)現(xiàn)。為了讓更多的學(xué)生看出其中的神奇,我將自主權(quán)交給了學(xué)生們,自己選擇算珠的顆數(shù)進(jìn)行了第三次實(shí)驗(yàn),然后板書(shū)出每組的實(shí)驗(yàn)結(jié)果,從結(jié)果的數(shù)據(jù)中,學(xué)生們都很興奮地發(fā)現(xiàn)了所用算珠的顆數(shù)是3顆,6顆,9顆,撥出的數(shù)都是3的倍數(shù),每個(gè)數(shù)所用算珠的顆數(shù),也是每個(gè)數(shù)各位上數(shù)的和。把算珠顆數(shù)抽象成各位上數(shù)的和,是理解3的倍數(shù)特征的關(guān)鍵。
“試一試”是教學(xué)的第三步,如果一個(gè)數(shù)不是3的倍數(shù),那么這個(gè)數(shù)各位數(shù)的和不是3的倍數(shù)。利用反例進(jìn)一步證實(shí)3的倍數(shù)的特征,體現(xiàn)了數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的確定性。可惜在這一點(diǎn)上,我很倉(cāng)促地指著黑板上算珠顆數(shù)是4顆,5顆,7顆,8顆時(shí),所擺出的數(shù)都不是3的倍數(shù),直接告訴了學(xué)生,而沒(méi)有讓學(xué)生自己舉出反例。隨后設(shè)計(jì)了一系列習(xí)題,使學(xué)生得到鞏固提高。
整節(jié)課只能說(shuō)順利地走了下來(lái),對(duì)于教者我來(lái)說(shuō)從中發(fā)現(xiàn)了自己教學(xué)上的不足之處,在今后的教學(xué)中,我將不斷學(xué)習(xí),及時(shí)總結(jié),虛心請(qǐng)教,以進(jìn)一步提高自己的教學(xué)業(yè)務(wù)水平。
3的身為一名到崗不久的老師,課堂教學(xué)是重要的工作之一,在寫(xiě)教學(xué)反思的時(shí)候可以反思自己的教學(xué)失誤,那么什么樣的教學(xué)反思才是好的呢?以下是小編收集整理的3的......
的倍數(shù)的特征教學(xué)反思篇十一
“能被3整除數(shù)的數(shù)”一課,能體現(xiàn)新的教育理念、教育思想。仔細(xì)分析,有以下幾個(gè)特點(diǎn):
本節(jié)課不僅重視學(xué)生掌握能被3整除數(shù)的特征,并能運(yùn)用特征進(jìn)行正確判斷,同時(shí)十分重視學(xué)生學(xué)習(xí)過(guò)程的體驗(yàn)和方法的滲透,讓學(xué)生通過(guò)“猜測(cè)——驗(yàn)證——提出新的假設(shè)——驗(yàn)證”的探索過(guò)程來(lái)發(fā)現(xiàn)知識(shí),獲得結(jié)論,并感悟方法。
教科書(shū)只是提供了學(xué)生學(xué)習(xí)活動(dòng)的基本線索。教學(xué)中,教師要充分發(fā)揮主觀能動(dòng)性,創(chuàng)造性的使用教科書(shū),本節(jié)課重新設(shè)計(jì)例題,通過(guò)用“0——9”十個(gè)數(shù)字組成能被整除的三位數(shù)讓學(xué)生探索特征,這樣處理使教學(xué)內(nèi)容有較強(qiáng)的靈活性,促進(jìn)了學(xué)生思維的發(fā)展。教學(xué)內(nèi)容生活化不僅能激發(fā)學(xué)生興趣,產(chǎn)生親切感,而且使學(xué)生認(rèn)識(shí)到現(xiàn)實(shí)生活中蘊(yùn)藏著豐富的數(shù)學(xué)問(wèn)題。開(kāi)課時(shí)收集的數(shù)據(jù)一方面激發(fā)了學(xué)生學(xué)習(xí)的興趣,同時(shí)也縮短了教師和學(xué)生的距離,課后“你再長(zhǎng)幾歲,這個(gè)歲數(shù)就能被3整除”這一開(kāi)放題富有情趣,給學(xué)生留下了深刻的印象。
學(xué)習(xí)方式的轉(zhuǎn)變是本節(jié)課的主要特色。本節(jié)課始終以自主探索、合作交流為主要的學(xué)習(xí)方式,讓學(xué)生通過(guò)自主選教學(xué)內(nèi)容,舉例驗(yàn)證等獨(dú)立思考和小組討論等合作探究活動(dòng),獲得教學(xué)知識(shí)、感悟方法。如在課的第二階段,設(shè)計(jì)三個(gè)層次的教學(xué)活動(dòng),讓學(xué)生充分探索、討論、交流,使學(xué)生真正成為學(xué)習(xí)的主人。第一層通過(guò)學(xué)生猜測(cè)、舉例、選數(shù)字組數(shù),使學(xué)生產(chǎn)生兩次認(rèn)知沖突;第二層通過(guò)交換三位數(shù)數(shù)字的位置,仍然沒(méi)能發(fā)現(xiàn)特征,產(chǎn)生第三次認(rèn)知沖突;第三層次通過(guò)計(jì)算各位上的數(shù)的“和、差、積、商”使結(jié)論逐漸顯露。這一過(guò)程不僅培養(yǎng)了學(xué)生探究精神,磨練了意志,同時(shí)也使學(xué)生品嘗了成功的喜悅。
的倍數(shù)的特征教學(xué)反思篇十二
《3的倍數(shù)的特征》是學(xué)生在學(xué)習(xí)過(guò)2.5倍數(shù)特征之后的又一內(nèi)容,因?yàn)?.5的倍數(shù)的特征僅僅體現(xiàn)在個(gè)位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個(gè)位上的數(shù)來(lái)判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來(lái)判斷,學(xué)生理解起來(lái)有一定的困難。我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——?jiǎng)邮衷囼?yàn)的過(guò)程中,概括歸納出了3的倍數(shù)特征。
找準(zhǔn)備知識(shí)中沖紛激發(fā)探索,在第一環(huán)節(jié)中我先讓學(xué)生復(fù)習(xí)2.5的倍數(shù)特征并對(duì)一些數(shù)據(jù)做出了判斷而后我們“誰(shuí)來(lái)猜測(cè)一下3的倍數(shù)特征”激發(fā)學(xué)生探究的愿望。由于學(xué)生剛剛復(fù)習(xí)了2.5倍數(shù)的特征,知道只要看一個(gè)數(shù)的個(gè)位,因此在學(xué)習(xí)3的倍數(shù)特征時(shí),自然會(huì)把“看個(gè)位”這一方法遷移過(guò)來(lái)。但實(shí)際上,卻不是這樣,于是新舊知識(shí)間的矛盾沖突使學(xué)生產(chǎn)生了困惑,有了新舊知識(shí)的矛盾沖突,就能激發(fā)起學(xué)生探究的愿望,這樣不反有利于學(xué)生對(duì)新知識(shí)的掌握,有效的將新知識(shí)納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的`意識(shí)和能力。
找準(zhǔn)知識(shí)之間的沖突并巧妙激發(fā)出來(lái),這是一節(jié)課的出彩之處,剛開(kāi)始我們先采用課本上百數(shù)表來(lái)研究,結(jié)果在一個(gè)班實(shí)踐后認(rèn)為效果并不是很理想,由于數(shù)太多,讓學(xué)生觀察3的倍數(shù)的這些數(shù)時(shí),并從中找出相同的地方,結(jié)果,很多同學(xué)找了與本節(jié)課毫無(wú)關(guān)系的東西,浪費(fèi)了很多時(shí)間。在評(píng)課的時(shí)候,我們又討論是不是找一些數(shù)代表百數(shù)表,于是我設(shè)計(jì)了一個(gè)表格,讓學(xué)生用除法計(jì)算的方法找到3的倍數(shù)的特征,并觀察這些數(shù),這些數(shù)的個(gè)位分別從0到9都有,讓學(xué)生知道3的倍數(shù)的特征跟數(shù)的個(gè)位沒(méi)有關(guān)系,然后從中又把像45和54,75和57,123和321等特殊的數(shù)單獨(dú)展示出來(lái),讓學(xué)生觀察從中找出規(guī)律。結(jié)果我又重新上了這節(jié)課,效果比上節(jié)課要好。
這節(jié)課結(jié)束后,我感覺(jué)最大的缺憾之處,最后總結(jié)3的倍數(shù)特征時(shí),應(yīng)放手讓孩子們多說(shuō),說(shuō)透,這樣更有助于鍛煉孩子的概括歸納能力。而練習(xí)題方面,也應(yīng)形式面多樣化,如用卡片練習(xí)判斷,或通過(guò)打手勢(shì)的方法或先聽(tīng)老師——這樣效率更高,課堂氛圍好,課堂不是同步,學(xué)生的發(fā)展始終是教學(xué)的落腳點(diǎn)。我們的教學(xué)應(yīng)著眼于學(xué)生對(duì)解決問(wèn)題方法的感悟,這樣才可獲得最佳的效果。
的倍數(shù)的特征教學(xué)反思篇十三
《3的倍數(shù)特征》進(jìn)行了兩次教學(xué)授課,第一次是新授,第二次是錄課重復(fù)授課。下面就本節(jié)課前后兩次上課進(jìn)行如下反思:第一次上課,采用游戲的方式引入,提前給學(xué)生編號(hào),根據(jù)編號(hào)做游戲。由于每個(gè)學(xué)生的編號(hào)不一樣,所以在做游戲的時(shí)候,每個(gè)學(xué)生集中注意力,傾聽(tīng)游戲要求,激發(fā)了學(xué)生的學(xué)習(xí)興趣。設(shè)置游戲的目的是復(fù)習(xí)2或5倍數(shù)的特征,同時(shí),對(duì)3的倍數(shù)特征的學(xué)習(xí)產(chǎn)生求知欲。接下來(lái)是采用提出猜想,舉出個(gè)例否定猜想來(lái)過(guò)渡。讓學(xué)生充分地認(rèn)識(shí)到依據(jù)2或5的倍數(shù)特征的思想已經(jīng)行不通了,從而開(kāi)始新的探索。在探索過(guò)程中借助“百數(shù)表”,讓學(xué)生獨(dú)立地圈出3的倍數(shù),圈完后互相交流3的倍數(shù)的個(gè)位有什么特點(diǎn),再次否定了之前的思維定式。由于個(gè)位上沒(méi)有特點(diǎn),所以引導(dǎo)學(xué)生從其他的角度觀察,學(xué)生能想到橫著觀察、豎著觀察,但對(duì)于斜著觀察不能很好的發(fā)現(xiàn),所以本節(jié)課中我關(guān)注到學(xué)生的思考困境,引導(dǎo)學(xué)生從斜著觀察的角度思考探索。當(dāng)學(xué)生斜著觀察時(shí)能發(fā)現(xiàn)個(gè)位上的數(shù)字依次減1,十位上的數(shù)字依次加1,適時(shí)提出“什么是沒(méi)有變的?”問(wèn)題一提出,學(xué)生恍然大悟,發(fā)現(xiàn):個(gè)位和十位上的數(shù)的和沒(méi)有變!順其自然的知道了3的倍數(shù)具有這樣規(guī)律。經(jīng)過(guò)研究每一斜行發(fā)現(xiàn):個(gè)位和十位上的數(shù)的和不變,都是3的倍數(shù)。知道了這個(gè)規(guī)律后,下面開(kāi)始延伸這個(gè)規(guī)律。一方面:驗(yàn)證百數(shù)表內(nèi)其他不是3的倍數(shù)是否具有這個(gè)規(guī)律?另一方面:比100大的數(shù),三位數(shù)、四位數(shù)、五位數(shù)等是否具有這個(gè)規(guī)律?通過(guò)兩方面的驗(yàn)證,再次強(qiáng)調(diào)了這個(gè)規(guī)律是普遍存在的,而這時(shí)3的倍數(shù)特征已經(jīng)歸結(jié)為:一個(gè)數(shù)各位上的數(shù)的和是3的倍數(shù),這個(gè)數(shù)就是3的倍數(shù)。知道了3的倍數(shù)特征之后通過(guò)練習(xí)鞏固加強(qiáng),練習(xí)的設(shè)計(jì)是三道題,這三道題設(shè)計(jì)為不同的層次,第一題是基礎(chǔ)題,第二題是拔高題,第三題是解決問(wèn)題。通過(guò)做題發(fā)現(xiàn)學(xué)生本節(jié)課掌握得不錯(cuò)。最后,對(duì)本節(jié)課的知識(shí)進(jìn)行了延伸,通過(guò)出示課本第13頁(yè)“你知道嗎?”,讓學(xué)生明白為什么2或5的倍數(shù)特征只看個(gè)位就可以了,而3的倍數(shù)特征需要看所有數(shù)位。從而達(dá)到學(xué)知識(shí)不但要知其然還要知其所以然。整個(gè)教學(xué)過(guò)程中,學(xué)生能在猜想、操作、驗(yàn)證、交流、歸納的數(shù)學(xué)活動(dòng)中獲得豐富的數(shù)學(xué)經(jīng)驗(yàn),同時(shí)這也有利于學(xué)生創(chuàng)造力的培養(yǎng)。通過(guò)本節(jié)課的教學(xué)以及學(xué)生的掌握情況,最終檢測(cè)本節(jié)課的目標(biāo)較好的達(dá)成。但反思這節(jié)課的不足,我覺(jué)得在每個(gè)環(huán)節(jié)上的過(guò)渡應(yīng)該更加的自然。另外,在小組討論的時(shí)候應(yīng)多關(guān)注學(xué)生的交流,對(duì)學(xué)生進(jìn)行適時(shí)地指導(dǎo)。基于第一節(jié)課的優(yōu)點(diǎn)和不足,進(jìn)行了第二次的授課即錄課。由于學(xué)生們已經(jīng)學(xué)習(xí)了過(guò)本節(jié)課,所以對(duì)于學(xué)生們來(lái)說(shuō)已經(jīng)是舊知識(shí)。要把舊知識(shí)重新來(lái)講,如果照搬之前的授課方式已經(jīng)遠(yuǎn)遠(yuǎn)不夠了。如何更改,這給我提出來(lái)一個(gè)新的問(wèn)題。為此,這節(jié)課我做了適當(dāng)?shù)恼{(diào)整。本節(jié)課我更多關(guān)注的是數(shù)學(xué)方法和思維方式的培養(yǎng)。其中體現(xiàn)在:
1、學(xué)生在舉例驗(yàn)證猜想的時(shí)候,讓學(xué)生體會(huì)反例的作用,如果有一個(gè)反例的存在,就說(shuō)明猜想的結(jié)論是錯(cuò)誤的。
2、在探索3的倍數(shù)特征時(shí),對(duì)于100以內(nèi)3的倍數(shù),應(yīng)如何著手驗(yàn)證,怎么選取數(shù)來(lái)驗(yàn)證,這一環(huán)節(jié)讓學(xué)生體會(huì):在研究規(guī)律的時(shí)候,優(yōu)先選擇數(shù)比較多的這一組,讓學(xué)生明白如果有規(guī)律更容易探索和發(fā)現(xiàn)。
3、在拓展規(guī)律的時(shí)候,采用舉了大量的數(shù)據(jù),證明了規(guī)律的普遍存在,讓學(xué)生體會(huì)規(guī)律的適用范圍。
4、在做練習(xí)的時(shí)候,第2小題,關(guān)注學(xué)生思考問(wèn)題是否全面,關(guān)注學(xué)生的思考過(guò)程。
5、練習(xí)的第3小題,一道解決問(wèn)題的題目,通過(guò)讓學(xué)生讀題、審題、分析題之后,再思考。這一道題學(xué)生展示了多種的做題方法,體現(xiàn)了方法的多樣性,同時(shí)也說(shuō)明學(xué)生的思維是活躍的。本節(jié)課中的不足,練習(xí)中第3題學(xué)生的做法沒(méi)有完全的在黑板上板書(shū),另外,本節(jié)課中學(xué)生會(huì)超前說(shuō)出所有問(wèn)題的答案,使得教師略顯失措,我覺(jué)得這是因?yàn)槲覀鋵W(xué)生還不夠。在今后的教學(xué)中,我會(huì)改進(jìn)自己的不足。我將更深入地研究教材、鉆研教法,不斷提高自己的教學(xué)水平,設(shè)計(jì)出學(xué)生更能接受和喜歡的課。
的倍數(shù)的特征教學(xué)反思篇十四
《3的倍數(shù)的特征》是學(xué)生在學(xué)習(xí)過(guò)2.5倍數(shù)特征之后的又一內(nèi)容,因?yàn)?.5的倍數(shù)的特征僅僅體現(xiàn)在個(gè)位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個(gè)位上的數(shù)來(lái)判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來(lái)判斷,學(xué)生理解起來(lái)有一定的困難。我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——?jiǎng)邮衷囼?yàn)的過(guò)程中,概括歸納出了3的倍數(shù)特征。
1、找準(zhǔn)知識(shí)沖突激發(fā)探索愿望。
找準(zhǔn)備知識(shí)中沖紛激發(fā)探索,在第一環(huán)節(jié)中我先讓學(xué)生復(fù)習(xí)2.5的倍數(shù)特征并對(duì)一些數(shù)據(jù)做出了判斷而后我們“誰(shuí)來(lái)猜測(cè)一下3的倍數(shù)特征”激發(fā)學(xué)生探究的愿望。由于學(xué)生剛剛復(fù)習(xí)了2.5倍數(shù)的特征,知道只要看一個(gè)數(shù)的個(gè)位,因此在學(xué)習(xí)3的倍數(shù)特征時(shí),自然會(huì)把“看個(gè)位”這一方法遷移過(guò)來(lái)。但實(shí)際上,卻不是這樣,于是新舊知識(shí)間的矛盾沖突使學(xué)生產(chǎn)生了困惑,有了新舊知識(shí)的矛盾沖突,就能激發(fā)起學(xué)生探究的愿望,這樣不反有利于學(xué)生對(duì)新知識(shí)的掌握,有效的將新知識(shí)納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識(shí)和能力。
2、激發(fā)學(xué)習(xí)中的困惑,讓探究走向深入。
找準(zhǔn)知識(shí)之間的沖突并巧妙激發(fā)出來(lái),這是一節(jié)課的出彩之處,剛開(kāi)始我們先采用課本上百數(shù)表來(lái)研究,結(jié)果在一個(gè)班實(shí)踐后認(rèn)為效果并不是很理想,由于數(shù)太多,讓學(xué)生觀察3的倍數(shù)的這些數(shù)時(shí),并從中找出相同的地方,結(jié)果,很多同學(xué)找了與本節(jié)課毫無(wú)關(guān)系的東西,浪費(fèi)了很多時(shí)間。在評(píng)課的時(shí)候,我們又討論是不是找一些數(shù)代表百數(shù)表,于是我設(shè)計(jì)了一個(gè)表格,讓學(xué)生用除法計(jì)算的方法找到3的倍數(shù)的特征,并觀察這些數(shù),這些數(shù)的個(gè)位分別從0到9都有,讓學(xué)生知道3的`倍數(shù)的特征跟數(shù)的個(gè)位沒(méi)有關(guān)系,然后從中又把像45和54,75和57,123和321等特殊的數(shù)單獨(dú)展示出來(lái),讓學(xué)生觀察從中找出規(guī)律。結(jié)果我又重新上了這節(jié)課,效果比上節(jié)課要好。
《3的倍數(shù)的特征》是學(xué)生在學(xué)習(xí)過(guò)2.5倍數(shù)特征之后的又一內(nèi)容,因?yàn)?.5的倍數(shù)的特征僅僅體現(xiàn)在個(gè)位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個(gè)位上的數(shù)來(lái)判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來(lái)判斷,學(xué)生理解起來(lái)有一定的困難。我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——?jiǎng)邮衷囼?yàn)的過(guò)程中,概括歸納出了3的倍數(shù)特征。
找準(zhǔn)知識(shí)沖突激發(fā)探索愿望。
找準(zhǔn)備知識(shí)中沖紛激發(fā)探索,在第一環(huán)節(jié)中我先讓學(xué)生復(fù)習(xí)2.5的倍數(shù)特征并對(duì)一些數(shù)據(jù)做出了判斷而后我們“誰(shuí)來(lái)猜測(cè)一下3的倍數(shù)特征”激發(fā)學(xué)生探究的愿望。由于學(xué)生剛剛復(fù)習(xí)了2.5倍數(shù)的特征,知道只要看一個(gè)數(shù)的個(gè)位,因此在學(xué)習(xí)3的倍數(shù)特征時(shí),自然會(huì)把“看個(gè)位”這一方法遷移過(guò)來(lái)。但實(shí)際上,卻不是這樣,于是新舊知識(shí)間的矛盾沖突使學(xué)生產(chǎn)生了困惑,有了新舊知識(shí)的矛盾沖突,就能激發(fā)起學(xué)生探究的愿望,這樣不反有利于學(xué)生對(duì)新知識(shí)的掌握,有效的將新知識(shí)納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識(shí)和能力。
的倍數(shù)的特征教學(xué)反思篇十五
《3的倍數(shù)的特征》是學(xué)生在學(xué)習(xí)過(guò)2.5倍數(shù)特征之后的又一內(nèi)容,因?yàn)?.5的倍數(shù)的特征僅僅體現(xiàn)在個(gè)位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個(gè)位上的數(shù)來(lái)判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來(lái)判斷,學(xué)生理解起來(lái)有一定的困難。我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——?jiǎng)邮衷囼?yàn)的過(guò)程中,概括歸納出了3的倍數(shù)特征。
找準(zhǔn)備知識(shí)中沖紛激發(fā)探索,在第一環(huán)節(jié)中我先讓學(xué)生復(fù)習(xí)2.5的倍數(shù)特征并對(duì)一些數(shù)據(jù)做出了判斷而后我們“誰(shuí)來(lái)猜測(cè)一下3的倍數(shù)特征”激發(fā)學(xué)生探究的愿望。由于學(xué)生剛剛復(fù)習(xí)了2.5倍數(shù)的特征,知道只要看一個(gè)數(shù)的個(gè)位,因此在學(xué)習(xí)3的倍數(shù)特征時(shí),自然會(huì)把“看個(gè)位”這一方法遷移過(guò)來(lái)。但實(shí)際上,卻不是這樣,于是新舊知識(shí)間的矛盾沖突使學(xué)生產(chǎn)生了困惑,有了新舊知識(shí)的矛盾沖突,就能激發(fā)起學(xué)生探究的愿望,這樣不反有利于學(xué)生對(duì)新知識(shí)的掌握,有效的將新知識(shí)納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識(shí)和能力。
找準(zhǔn)知識(shí)之間的沖突并巧妙激發(fā)出來(lái),這是一節(jié)課的出彩之處,剛開(kāi)始我們先采用課本上百數(shù)表來(lái)研究,結(jié)果在一個(gè)班實(shí)踐后認(rèn)為效果并不是很理想,由于數(shù)太多,讓學(xué)生觀察3的倍數(shù)的這些數(shù)時(shí),并從中找出相同的地方,結(jié)果,很多同學(xué)找了與本節(jié)課毫無(wú)關(guān)系的東西,浪費(fèi)了很多時(shí)間。在評(píng)課的時(shí)候,我們又討論是不是找一些數(shù)代表百數(shù)表,于是我設(shè)計(jì)了一個(gè)表格,讓學(xué)生用除法計(jì)算的方法找到3的倍數(shù)的特征,并觀察這些數(shù),這些數(shù)的個(gè)位分別從0到9都有,讓學(xué)生知道3的倍數(shù)的特征跟數(shù)的個(gè)位沒(méi)有關(guān)系,然后從中又把像45和54,75和57,123和321等特殊的數(shù)單獨(dú)展示出來(lái),讓學(xué)生觀察從中找出規(guī)律。結(jié)果我又重新上了這節(jié)課,效果比上節(jié)課要好。