作為一位杰出的教職工,總歸要編寫教案,教案是教學活動的總的組織綱領和行動方案。寫教案的時候需要注意什么呢?有哪些格式需要注意呢?這里我給大家分享一些最新的教案范文,方便大家學習。
高一數學教案必修一集合篇一
本章的中心內容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實在解三角形的應用上。通過本章學習,學生應當達到以下學習目標:
(1)通過對任意三角形邊長和角度關系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題。
(2)能夠熟練運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關的生活實際問題。
數學思想方法的教學是中學數學教學中的重要組成部分,有利于學生加深數學知識的理解和掌握。
本章重視與內容密切相關的數學思想方法的教學,并且在提出問題、思考解決問題的策略等方面對學生進行具體示范、引導。本章的兩個主要數學結論是正弦定理和余弦定理,它們都是關于三角形的邊角關系的結論。在初中,學生已經學習了相關邊角關系的定性的知識,就是“在任意三角形中有大邊對大角,小邊對小角”,“如果已知兩個三角形的兩條對應邊及其所夾的角相等,那么這兩個三角形全”等。
教科書在引入正弦定理內容時,讓學生從已有的幾何知識出發,提出探究性問題:“在任意三角形中有大邊對大角,小邊對小角的邊角關系.我們是否能得到這個邊、角的關系準確量化的表示呢?”,在引入余弦定理內容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們仍然從量化的角度來研究這個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的問題。”設置這些問題,都是為了加強數學思想方法的教學。
加強與前后各章教學內容的聯系,注意復習和應用已學內容,并為后續章節教學內容做好準備,能使整套教科書成為一個有機整體,提高教學效益,并有利于學生對于數學知識的學習和鞏固。
本章內容處理三角形中的邊角關系,與初中學習的三角形的邊與角的基本關系,已知三角形的邊和角相等判定三角形全等的知識有著密切聯系。教科書在引入正弦定理內容時,讓學生從已有的幾何知識出發,提出探究性問題“在任意三角形中有大邊對大角,小邊對小角的邊角關系.我們是否能得到這個邊、角的關系準確量化的表示呢?”,在引入余弦定理內容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們仍然從量化的角度來研究這個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的問題。”這樣,從聯系的觀點,從新的角度看過去的問題,使學生對于過去的知識有了新的認識,同時使新知識建立在已有知識的堅實基礎上,形成良好的知識結構。
《課程標準》和教科書把“解三角形”這部分內容安排在數學五的第一部分內容,
位置相對靠后,在此內容之前學生已經學習了三角函數、平面向量、直線和圓的方程等與本章知識聯系密切的內容,這使這部分內容的處理有了比較多的工具,某些內容可以處理得更加簡潔。比如對于余弦定理的證明,常用的方法是借助于三角的方法,需要對于三角形進行討論,方法不夠簡潔,教科書則用了向量的方法,發揮了向量方法在解決問題中的威力。
在證明了余弦定理及其推論以后,教科書從余弦定理與勾股定理的比較中,提出了一個思考問題“勾股定理指出了直角三角形中三邊平方之間的關系,余弦定理則指出了一般三角形中三邊平方之間的關系,如何看這兩個定理之間的'關系?”,并進而指出,“從余弦定理以及余弦函數的性質可知,如果一個三角形兩邊的平方和等于第三邊的平方,那么第三邊所對的角是直角;如果小于第三邊的平方,那么第三邊所對的角是鈍角;如果大于第三邊的平方,那么第三邊所對的角是銳角.從上可知,余弦定理是勾股定理的推廣.”
學數學的最終目的是應用數學,而如今比較突出的兩個問題是,學生應用數學的意識不強,創造能力較弱。學生往往不能把實際問題抽象成數學問題,不能把所學的數學知識應用到實際問題中去,對所學數學知識的實際背景了解不多,雖然學生機械地模仿一些常見數學問題解法的能力較強,但當面臨一種新的問題時卻辦法不多,對于諸如觀察、分析、歸納、類比、抽象、概括、猜想等發現問題、解決問題的科學思維方法了解不夠。針對這些實際情況,本章重視從實際問題出發,引入數學課題,最后把數學知識應用于實際問題。
1.1正弦定理和余弦定理(約3課時)
1.2應用舉例(約4課時)
1.3實習作業(約1課時)
1.要在本章的教學中,應該根據教學實際,啟發學生不斷提出問題,研究問題。在對于正弦定理和余弦定理的證明的探究過程中,應該因勢利導,根據具體教學過程中學生思考問題的方向來啟發學生得到自己對于定理的證明。如對于正弦定理,可以啟發得到有應用向量方法的證明,對于余弦定理則可以啟發得到三角方法和解析的方法。在應用兩個定理解決有關的解三角形和測量問題的過程中,一個問題也常常有多種不同的解決方案,應該鼓勵學生提出自己的解決辦法,并對于不同的方法進行必要的分析和比較。對于一些常見的測量問題甚至可以鼓勵學生設計應用的程序,得到在實際中可以直接應用的算法。
2.適當安排一些實習作業,目的是讓學生進一步鞏固所學的知識,提高學生分析問題的解決實際問題的能力、動手操作的能力以及用數學語言表達實習過程和實習結果能力,增強學生應用數學的意識和數學實踐能力。教師要注意對于學生實習作業的指導,包括對于實際測量問題的選擇,及時糾正實際操作中的錯誤,解決測量中出現的一些問題。
高一數學教案必修一集合篇二
了解現實世界和日常生活中的不等關系,了解不等式(組)的實際背景.
(2)一元二次不等式
會從實際情境中抽象出一元二次不等式模型.
通過函數圖象了解一元二次不等式與相應的二次函數、一元二次方程的聯系.
會解一元二次不等式,對給定的一元二次不等式,會設計求解的程序框圖.
(3)二元一次不等式組與簡單線性規劃問題
會從實際情境中抽象出二元一次不等式組.
了解二元一次不等式的幾何意義,能用平面區域表示二元一次不等式組.
會從實際情境中抽象出一些簡單的二元線性規劃問題,并能加以解決.
(4)基本不等式:
了解基本不等式的證明過程.
高一數學教案必修一集合篇三
(1)掌握與()型的絕對值不等式的解法.
(2)掌握與()型的絕對值不等式的解法.
(3)通過用數軸來表示含絕對值不等式的解集,培養學生數形結合的能力;
教學重點:型的不等式的解法;
教學難點:利用絕對值的意義分析、解決問題.
教學過程設計
教師活動
學生活動
設計意圖
一、導入新課
【提問】正數的絕對值什么?負數的絕對值是什么?零的絕對值是什么?舉例說明?
【概括】
口答
絕對值的概念是解與()型絕對值不等值的概念,為解這種類型的絕對值不等式做好鋪墊.
二、新課
【提問】如何解絕對值方程.
【質疑】的解集有幾部分?為什么也是它的解集?
【練習】解下列不等式:
(1);
(2)
【設問】如果在中的,也就是怎樣解?
【點撥】可以把看成一個整體,也就是把看成,按照的解法來解.
所以,原不等式的解集是
【設問】如果中的是,也就是怎樣解?
【點撥】可以把看成一個整體,也就是把看成,按照的解法來解.
,或,
由得
由得
所以,原不等式的解集是
口答.畫出數軸后在數軸上表示絕對值等于2的數.
畫出數軸,思考答案
不等式的解集表示為
畫出數軸
思考答案
不等式的解集為
或表示為,或
筆答
(1)
(2),或
筆答
筆答
根據絕對值的意義自然引出絕對值方程()的解法.
由淺入深,循序漸進,在型絕對值方程的基礎上引出()型絕對值方程的解法.
針對解()絕對值不等式學生常出現的情況,運用數軸質疑、解惑.
落實會正確解出與()絕對值不等式的教學目標.
在將看成一個整體的關鍵處點撥、啟發,使學生主動地進行練習.
繼續強化將看成一個整體繼續強化解不等式時不要犯丟掉這部分解的錯誤.
三、課堂練習
解下列不等式:
(1);
(2)
筆答
(1);
(2)
檢查教學目標落實情況.
四、小結
的解集是;的解集是
解絕對值不等式注意不要丟掉這部分解集.
五、作業
1.閱讀課本含絕對值不等式解法.
2.習題2、3、4
課堂教學設計說明
1.抓住解型絕對值不等式的關鍵是絕對值的意義,為此首先通過復習讓學生掌握好絕對值的意義,為解絕對值不等式打下牢固的基礎.
2.在解與絕對值不等式中的關鍵處設問、質疑、點撥,讓學生融會貫通的掌握它們解法之間的內在聯系,以達到提高學生解題能力的目的.
3.針對學生解()絕對值不等式容易出現丟掉這部分解集的錯誤,在教學中應根據絕對值的意義從數軸進行突破,并在練習中糾正這個錯誤,以提高學生的運算能力.
高一數學教案必修一集合篇四
在復習時,由于解題的量很大,就更要求我們將解題活動組織得生動活潑、情趣盎然。讓學生領略到數學的優美、奇異和魅力,這樣才能變苦役為享受,有效地防止智力疲勞,保持解題的“好胃口”。一道好的數學題,即便具有相當的難度,它卻像一段引人入勝的故事,又像一部情節曲折的電視劇,那迭起的懸念、叢生的疑竇正是它的誘人之處。
“山重水復”的困惑被“柳暗花明”的喜悅取代之后,學生又怎能不贊嘆自己智能的威力?我們要使學生由“要我學”轉化為“我要學”,課堂上要想方設法調動學生的學習積極性,創設情境,激發熱情,有這樣一些比較成功的做法:一是運用情感原理,喚起學生學習數學的熱情;二是運用成功原理,變苦學為樂學;三是在學法上教給學生“點金術”,等等。
在課堂教學結構上,更新教育觀念,始終堅持以學生為主體,以教師為主導的教學原則
教育家蘇霍姆林斯基曾經告誡我們:“希望你們要警惕,在課堂上不要總是教師在講,這種做法不好……讓學生通過自己的努力去理解的東西,才能成為自己的東西,才是他真正掌握的東西。”按我們的說法就是:師傅的任務在于度,徒弟的任務在于悟。數學課堂教學必須廢除“注入式”“滿堂灌”的教法。復習課也不能由教師包講,更不能成為教師展示自己解題“高難動作”的“絕活表演”,而要讓學生成為學習的主人,讓他們在主動積極的探索活動中實現創新、突破,展示自己的才華智慧,提高數學素養和悟性。
作為教學活動的組織者,教師的任務是點撥、啟發、誘導、調控,而這些都應以學生為中心。復習課上有一個突出的矛盾,就是時間太緊,既要處理足量的題目,又要充分展示學生的思維過程,二者似乎是很難兼顧。我們可采用“焦點訪談”法較好地解決這個問題,因大多數題目是“入口寬,上手易”,但在連續探究的過程中,常在某一點或某幾點上擱淺受阻,這些點被稱為“焦點”,其余的則被稱為“外圍”。我們大可不必在外圍處花精力去進行淺表性的啟發誘導,好鋼要用在刀刃上,而只要在焦點處發動學生探尋突破口,通過訪談,集中學生的智慧,讓學生的思維在關鍵處閃光,能力在要害處增長,弱點在隱蔽處暴露,意志在細微處磨礪。通過訪談實現學生間、師生間智慧和能力的互補,促進相互的心靈和感情的溝通。
高一數學教案必修一集合篇五
一、教學目標:
知識與技能:了解直線參數方程的條件及參數的意義
過程與方法:能根據直線的幾何條件,寫出直線的參數方程及參數的意義
情感、態度與價值觀:通過觀察、探索、發現的創造性過程,培養創新意識。
二、重難點:
教學重點:曲線參數方程的定義及方法
教學難點:選擇適當的參數寫出曲線的參數方程.
三、教學方法:
啟發、誘導發現教學.
四、教學過程
(一)、復習引入:
1.寫出圓方程的標準式和對應的參數方程。
圓參數方程(為參數)
(2)圓參數方程為:(為參數)
2.寫出橢圓參數方程.
(二)、講解新課:
如果已知直線l經過兩個定點q(1,1),p(4,3),
那么又如何描述直線l上任意點的位置呢?
2、教師引導學生推導直線的參數方程:
(1)過定點傾斜角為的直線的
參數方程
(為參數)
【辨析直線的參數方程】:設m(x,y)為直線上的任意一點,參數t的幾何意義是指從點p到點m的位移,可以用有向線段數量來表示。帶符號.
(2)、經過兩個定點q,p(其中)的'直線的參數方程為。其中點m(x,y)為直線上的任意一點。這里參數的幾何意義與參數方程(1)中的t顯然不同,它所反映的是動點m分有向線段的數量比。當時,m為內分點;當且時,m為外分點;當時,點m與q重合。
(三)、直線的參數方程應用,強化理解。
1、例題:
學生練習,教師準對問題講評。反思歸納:
1)求直線參數方程的方法;
2)利用直線參數方程求交點。
2、鞏固導練:
補充:
1)直線與圓相切,那么直線的傾斜角為(a)
a.或b.或c.或d.或
2)(坐標系與參數方程選做題)若直線與直線(為參數)垂直,則.
解:直線化為普通方程是,
該直線的斜率為,
直線(為參數)化為普通方程是,
該直線的斜率為,
則由兩直線垂直的充要條件,得,。
(四)、小結:
(1)直線參數方程求法;
(2)直線參數方程的特點;
(3)根據已知條件和圖形的幾何性質,注意參數的意義。
(五)、作業:
補充:設直線的參數方程為(t為參數),直線的方程為y=3x+4則與的距離為
【考點定位】本小題考查參數方程化為普通方程、兩條平行線間的距離,基礎題。
解析:由題直線的普通方程為,故它與與的距離為。
五、教學反思:
高一數學教案必修一集合篇六
初中新課程中數學知識點刪了很多要求,如“立方和、立方差”公式,“韋達定理”,“十字相乘法分解因式”等。雖然初中新課程對這些知識點不作要求,但是從高中數學教學的實踐來看,學生掌握了這些知識點對學習新的知識有一定的促進作用,因此,建議教師可根據學生和教學的實際情況,做適當的補充,同時,初中學習的有理數乘方及運算性質和二次函數,這些知識也要進行必要的復習等,這樣有利于后期的教學。
2、思維能力和運算能力的進一步強化
初中新課程的內容傾向于基礎性、普及性、應用性和直觀性,學生的實踐能力很強,但學生的數學思維能力有所欠缺,尤其是抽象思維能力較弱,這對高中數學學習的影響很大。因此,教師要逐漸培養學生的抽象思維能力。同時,由于初中大量使用計算器,學生的計算能力很弱,這與高中數學要求學生要有較強的化簡、變形、推理及運算能力有一定的差距,從教學的實踐來看,學生作業中出現的大量錯誤與計算能力較弱有很大關系。因此,建議教師可根據學生的實際情況,從高一開始就要切實提高學生的運算能力。
3、抓住學科特點,做好順利過渡
高中數學知識量大,理論性、綜合性強,同時高中課時少,學生基礎差等,知識的難度和對學生能力的要求和初中相比都有較大的提高(如“集合”、“映射”、“函數”等都比較抽象,難度大,“函數”等知識綜合性較強)。學好高中數學需要學生具有較強的閱讀能力、運算能力、邏輯推理能力、抽象思維能力及分析問題、解決問題的綜合能力,這與初中數學知識點較少,難度較低,形成較大的差距。因此,教師要能夠根據實際情況及時調整教學方法和教學過程,使學生能順利進入高中并能盡快適應高中的數學學習。
高一數學教案必修一集合篇七
立體幾何的證明是數學學科中任一分之也替代不了的。因此,歷年高考中都有立體幾何論證的考察。論證時,首先要保持嚴密性,對任何一個定義、定理及推論的理解要做到準確無誤。符號表示與定理完全一致,定理的所有條件都具備了,才能推出相關結論。切忌條件不全就下結論。其次,在論證問題時,思考應多用分析法,即逐步地找到結論成立的充分條件,向已知靠攏,然后用綜合法(“推出法”)形式寫出。
二、立足課本,夯實基礎
學習立體幾何的一個捷徑就是認真學習課本中定理的證明,尤其是一些很關鍵的定理的證明。定理的內容都很簡單,就是線與線,線與面,面與面之間的聯系的闡述。但定理的證明在初學的時候一般都很復雜,甚至很抽象。深刻掌握定理的內容,明確定理的作用是什么,多用在那些地方,怎么用。
三、培養空間想象力
為了培養空間想象力,可以在剛開始學習時,動手制作一些簡單的模型用以幫助想象。例如:正方體或長方體。在正方體中尋找線與線、線與面、面與面之間的關系。通過模型中的點、線、面之間的位置關系的觀察,逐步培養自己對空間圖形的想象能力和識別能力。其次,要培養自己的畫圖能力。可以從簡單的圖形(如:直線和平面)、簡單的幾何體(如:正方體)開始畫起。最后要做的就是樹立起立體觀念,做到能想象出空間圖形并把它畫在一個平面(如:紙、黑板)上,還要能根據畫在平面上的“立體”圖形,想象出原來空間圖形的真實形狀。空間想象力并不是漫無邊際的胡思亂想,而是以提設為根據,以幾何體為依托,這樣就會給空間想象力插上翱翔的翅膀。
四、“轉化”思想的應用
解立體幾何的問題,主要是充分運用“轉化”這種數學思想,要明確在轉化過程中什么變了,什么沒變,有什么聯系,這是非常關鍵的。例如:
(1)兩條異面直線所成的角轉化為兩條相交直線的夾角即過空間任意一點引兩條異面直線的平行線。斜線與平面所成的角轉化為直線與直線所成的角即斜線與斜線在該平面內的射影所成的角。
(2)異面直線的距離可以轉化為直線和與它平行的平面間的距離,也可以轉化為兩平行平面的距離,即異面直線的距離與線面距離、面面距離三者可以相互轉化。而面面距離可以轉化為線面距離,再轉化為點面距離,點面距離又可轉化為點線距離。
(3)面和面平行可以轉化為線面平行,線面平行又可轉化為線線平行。而線線平行又可以由線面平行或面面平行得到,它們之間可以相互轉化。同樣面面垂直可以轉化為線面垂直,進而轉化為線線垂直。
五、建立數學模型
新課程標準中多次提到“數學模型”一詞,目的是進一步加強數學與現實世界的聯系。數學模型是把實際問題用數學語言抽象概括,再從數學角度來反映或近似地反映實際問題時,所得出的關于實際問題的描述。數學模型的形式是多樣的,它們可以是幾何圖形,也可以是方程式,函數解析式等等。實際問題越復雜,相應的數學模型也越復雜。
從形狀的角度反映現實世界的物體時,經過抽象得到的空間幾何體就是現實世界物體的幾何模型。由于立體幾何學習的知識內容與學生的聯系非常密切,空間幾何體是很多物體的幾何模型,這些模型可以描述現實世界中的許多物體。他們直觀、具體、對培養大家的幾何直觀能力有很大的幫助。空間幾何體,特別是長方體,其中的棱與棱、棱與面、面與面之間的位置關系,是研究直線與直線、直線與平面、平面與平面位置關系的直觀載體。學習時,一方面要注意從實際出發,把學習的知識與周圍的實物聯系起來,另一方面,也要注意經歷從現實的生活抽象空間圖形的過程,注重探索空間圖形的位置關系,歸納、概括它們的判定定理和性質定理。
高一數學教案必修一集合篇八
函數思想在解題中的應用主要表現在兩個方面:一是借助有關初等函數的性質,解有關求值、解(證)不等式、解方程以及討論參數的取值范圍等問題:二是在問題的研究中,通過建立函數關系式或構造中間函數,把所研究的問題轉化為討論函數的有關性質,達到化難為易,化繁為簡的目的。函數與方程的思想是中學數學的基本思想,也是歷年高考的重點。
1.函數的思想,是用運動和變化的觀點,分析和研究數學中的數量關系,建立函數關系或構造函數,運用函數的圖像和性質去分析問題、轉化問題,從而使問題獲得解決。
3.函數方程思想的幾種重要形式
(1)函數和方程是密切相關的,對于函數y=f(x),當y=0時,就轉化為方程f(x)=0,也可以把函數式y=f(x)看做二元方程y-f(x)=0。
(6)立體幾何中有關線段、角、面積、體積的計算,經常需要運用布列方程或建立函數表達式的方法加以解決。
高一數學教案必修一集合篇九
棱柱的定義:有兩個面互相平行,其余各面都是四邊形,并且每兩個四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。
棱柱的性質
(1)側棱都相等,側面是平行四邊形
(2)兩個底面與平行于底面的截面是全等的多邊形
(3)過不相鄰的兩條側棱的截面(對角面)是平行四邊形
2、棱錐
棱錐的性質:
(1)側棱交于一點。側面都是三角形
3、正棱錐
正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質:
(1)各側棱交于一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
(2)多個特殊的直角三角形
a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。
b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。
高一數學教案必修一集合篇十
教學目標
掌握等差數列與等比數列的概念,通項公式與前n項和公式,等差中項與等比中項的概念,并能運用這些知識解決一些基本問題.
教學重難點
掌握等差數列與等比數列的概念,通項公式與前n項和公式,等差中項與等比中項的概念,
教學過程
等比數列性質請同學們類比得出.
【方法規律】
1、通項公式與前n項和公式聯系著五個基本量,“知三求二”是一類最基本的運算題.方程觀點是解決這類問題的基本數學思想和方法.
2、判斷一個數列是等差數列或等比數列,常用的方法使用定義.特別地,在判斷三個實數
a,b,c成等差(比)數列時,常用(注:若為等比數列,則a,b,c均不為0)
3、在求等差數列前n項和的最大(小)值時,常用函數的思想和方法加以解決.
【示范舉例】
例1:(1)設等差數列的前n項和為30,前2n項和為100,則前3n項和為 .
(2)一個等比數列的前三項之和為26,前六項之和為728,則a1= ,q= .
例2:四數中前三個數成等比數列,后三個數成等差數列,首末兩項之和為21,中間兩項之和為18,求此四個數.
例3:項數為奇數的等差數列,奇數項之和為44,偶數項之和為33,求該數列的中間項.