作為一位杰出的教職工,總歸要編寫教案,教案是教學活動的總的組織綱領和行動方案。寫教案的時候需要注意什么呢?有哪些格式需要注意呢?以下我給大家整理了一些優質的教案范文,希望對大家能夠有所幫助。
八年級數學詳細教案篇1
一、利用勾股定理進行計算
1、求面積
例1:如圖1,在等腰△ABC中,腰長AB=10cm,底BC=16cm,試求這個三角形面積。
析解:若能求出這個等腰三角形底邊上的高,就可以求出這個三角形面積。而由等腰三角形"三線合一"性質,可聯想作底邊上的高AD,此時D也為底邊的中點,這樣在Rt△ABD中,由勾股定理得AD2=AB2—BD2=102—82=36,所以AD=6cm,所以這個三角形面積為×BC×AD=×16×6=48cm2。
2、求邊長
例2:如圖2,在△ABC中,∠C=135?BC=,AC=2,試求AB的長。
析解:題中沒有直角三角形,不能直接用勾股定理,可考慮過點B作BD⊥AC,交AC的延長線于D點,構成Rt△CBD和Rt△ABD。在Rt△CBD中,因為∠ACB=135?所以∠BCB=45?,所以BD=CD,由BC=,根據勾股定理得BD2+CD2=BC2,得BD=CD=1,所以AD=AC+CD=3。在Rt△ABD中,由勾股定理得AB2=AD2+BD2=32+12=10,所以AB=。
點評:這兩道題有一個共同的特征,都沒有現成的直角三角形,都是通過添加適當的輔助線,巧妙構造直角三角形,借助勾股定理來解決問題的,這種解決問題的方法里蘊含著數學中很重要的轉化思想,請同學們要留心。
二、利用勾股定理的逆定理判斷直角三角形
例3:已知a,b,c為△ABC的三邊長,且滿足a2+b2+c2+338=10a+24b+26c。試判斷△ABC的形狀。
析解:由于所給條件是關于a,b,c的一個等式,要判斷△ABC的形狀,設法求出式中的a,b,c的值或找出它們之間的關系(相等與否)等,因此考慮利用因式分解將所給式子進行變形。因為a2+b2+c2+338=10a+24b+26c,所以a2—10a+b2—24b+c2—26c+338=0,所以a2—10a+25+b2—24b+144+c2—26c+169=0,所以(a—5)2+(b—12)2+(c—13)2=0。因為(a—5)2≥0,(b—12)2≥0,(c—13)2≥0,所以a—5=0,b—12=0,c—13=0,即a=5,b=12,c=13。因為52+122=132,所以a2+b2=c2,即△ABC是直角三角形。
點評:用代數方法來研究幾何問題是勾股定理的逆定理的"數形結合思想"的重要體現。
三、利用勾股定理說明線段平方和、差之間的關系
例4:如圖3,在△ABC中,∠C=90?,D是AC的中點,DE⊥AB于E點,試說明:BC2=BE2—AE2。
析解:由于要說明的是線段平方差問題,故可考慮利用勾股定理,注意到∠C=∠BED=∠AED=90?及CD=AD,可連結BD來解決。因為∠C=90?,所以BD2=BC2+CD2。又DE⊥AB,所以∠BED=∠AED=90?,在Rt△BED中,有BD2=BE2+DE2。在Rt△AED中,有AD2=DE2+AE2。又D是AC的中點,所以AD=CD。故BC2+CD2=BC2+AD2=BC2+DE2+AE2=BE2+DE2,所以BE2=BC2+AE2,所以BC2=BE2—AE2。
點評:若所給題目的已知或結論中含有線段的平方和或平方差關系時,則可考慮構造直角三角形,利用勾股定理來解決問題。
八年級數學詳細教案篇2
一、教學目標:
1、知識目標:能熟練掌握簡單圖形的移動規律,能按要求作出簡單平面圖形平移后的圖形,能夠探索圖形之間的平移關系;
2、能力目標:①,在實踐操作過程中,逐步探索圖形之間的平移關系;
②,對組合圖形要找到一個或者幾個“基本圖案”,并能通過對“基本圖案”的平移,復制所求的圖形;
3、情感目標:經歷對圖形進行觀察、分析、欣賞和動手操作、畫圖等過程,發展初步的審美能力,增強對圖形欣賞的意識。
二、重點與難點:
重點:圖形連續變化的特點;
難點:圖形的劃分。
三、教學方法:
講練結合。使用多媒體課件輔助教學。
八年級數學上冊教案四、教具準備:
多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。
五、教學設計:
教師活動
學生活動
設計意圖
創設情景,探究新知:
(演示課件):教材上小狗的圖案。提問:(1)這個圖案有什么特點?(2)它可以通過什么“基本圖案”,經過怎樣的平移而形成?(3)在平移過程中,“基本圖案”的大小、形狀、位置是否發生了變化?
小組討論,派代表回答。(答案可以多種)
讓學生充分討論,歸納總結,老師給予適當的指導,并對每種答案都要肯定。
看磁性黑板,展示教材64頁圖3-9,提問:左圖是一個正六邊形,它經過怎樣的平移能得到右圖?誰到黑板做做看?
展示教材64頁3-10,提問:左圖是一種“工”字形磚,右圖是怎樣通過左圖得到的?
小組討論,派代表到臺上給大家講解。
氣氛要熱烈,充分調動學生的積極性,發掘他們的想象力。
(演示課件)教材65頁圖3-11,提問:這個圖可以看做是什么“基本圖案”通過平移得到的?
暢所欲言,互相補充。
課堂小結:
在教師的引導下學生總結本節課的主要內容,并啟發學生在我們周圍尋找平移的例子。
課堂練習:
(演示課件)教材65頁“隨堂練習”。
小組討論。
小組討論完成。
例子一定要和大家接觸緊密、典型。
答案不惟一,對于每種答案,教師都要給予充分的肯定。
六、教學反思:
本節的內容并不是很復雜,借助多媒體進行直觀、形象,內容貼近生活,學生興致較高,課堂氣氛活躍,參與意識較強,學生一般都能在教師的指導下掌握。教學過程中滲透數學美學思想,促進學生綜合素質的提高。
八年級數學詳細教案篇3
教學目標:
1、了解算術平方根的概念,會用根號表示正數的算術平方根,并了解算術平方根的非負性。
2、了解開方與乘方互為逆運算,會用平方運算求某些非負數的算術平方根。
教學重點:
算術平方根的概念。
教學難點:
根據算術平方根的概念正確求出非負數的算術平方根。
教學過程
一、情境導入
請同學們欣賞本節導圖,并回答問題,學校要舉行金秋美術作品比賽,小歐很高興,他想裁出一塊面積為25 的正方形畫布,畫上自己的得意之作參加比賽,這塊正方形畫布的邊長應取多少 ?如果這塊畫布的面積是 ?這個問題實際上是已知一個正數的平方,求這個正數的問題?
這就要用到平方根的概念,也就是本章的主要學習內容。這節課我們先學習有關算術平方根的概念。
二、導入新課:
1、提出問題:(書P68頁的問題)
你是怎樣算出畫框的邊長等于5dm的呢?(學生思考并交流解法)
這個問題相當于在等式擴=25中求出正數x的值。
一般地,如果一個正數x的平方等于a,即 =a,那么這個正數x叫做a的算術平方根。a的算術平方根記為 ,讀作根號a,a叫做被開方數。規定:0的算術平方根是0.
也就是,在等式 =a (x0)中,規定x = 。
2、 試一試:你能根據等式: =144說出144的算術平方根是多少嗎?并用等式表示出來。
3、 想一想:下列式子表示什么意思?你能求出它們的值嗎?
建議:求值時,要按照算術平方根的意義,寫出應該滿足的關系式,然后按照算術平方根的記法寫出對應的值。例如 表示25的算術平方根。
4、例1 求下列各數的算術平方根:
(1)100;(2)1;(3) ;(4)0.0001
三、練習
P69練習 1、2
四、探究:(課本第69頁)
怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?
方法1:課本中的方法,略;
方法2:
可還有其他方法,鼓勵學生探究。
問題:這個大正方形的邊長應該是多少呢?
(白話文☆www.baihuawen.cn)大正方形的邊長是 ,表示2的算術平方根,它到底是個多大的數?你能求出它的值嗎?
建議學生觀察圖形感受 的大小。小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節課探究。
五、小結:
1、這節課學習了什么呢?
2、算術平方根的具體意義是怎么樣的?
3、怎樣求一個正數的算術平方根
六、課外作業:
P75習題13.1活動第1、2、3題