在日常的學習、工作、生活中,肯定對各類范文都很熟悉吧。寫范文的時候需要注意什么呢?有哪些格式需要注意呢?下面我給大家整理了一些優秀范文,希望能夠幫助到大家,我們一起來看一看吧。
三角形的特性一教學設計篇一
1、面向學生:初中 學科:數學
2、課時:1
3、學生課前準備:
(1)回憶等腰三角形的有關性質
(2)等腰三角形紙片
(3)完成課后習題
課題:等腰三角形的性質與判定
(1) 課堂活動以學生為主體,教師為主導,重點放在如何調動學生的積極性,讓學生觀
察、分析、歸納概括,主動獲得知識。
(2) 組織學生欣賞圖片,激發學生的學習興趣,讓學生獲得知識,提高能力。
(3) 在教學中,向學生滲透數學思想方法,培養學生說理的能力。
1、 等腰三角形是在三角形知識基礎上的繼續深入,如何利用學習三角形的過程中已經形成的思路和觀點,也是對理解“等腰”這個條件造成的特殊結果的重要之處。
2、 等腰三角形是基本的幾何圖形之一,在今后的幾何學習中有著重要的地位,是構成復雜圖形的基本單位,等腰三角形的定理為今后有關幾何問題的解決提供了有力的工具。
3、 對稱是幾何圖形觀察和思維的重要思想,也是解決生活中實際問題的常用出發點之一,學好本節知識對加深對稱思想的理解有重要意義。
4、 例題中的幾何運算,是數形結合的思想的初步體驗,如何在幾何中結合代數的等量思想是教學中應重點研究的問題。
5、 如何把握合情推理的書寫及重點問題,本課中的例題也進一步做了示范,可以認真研究。
6、 本課對學生的動手能力,觀察能力都有一定的要求,對培養學生靈活的思維,提高學生解決實際問題的能力都有重要的意義。
7、 本課內容安排上難度和強度不高,適合學生討論,可以充分開展合作學習,培養學生的合作精神和團隊競爭的意識。
8、 課本為學生提供自主探索的空間,然后在進行證明,將探索和證明有機的結合起來,引導學生不斷感受證明的必要性。
本節課采用合作探究的教學方法,在教師的引導下,通過合作探究的方式、發現、分析問題并解決問題,為學生提供從事數學活動的機會,幫助學生進行自主探究與合作交流。以活動形式展開教學,綜合運用啟發式、多媒體演示、互聯網探索等教學手段,培養學生的主體意識。
教學目標:
1、知識與技能:經歷探索——發現——猜想——證明等腰三角形的性質和判定的過程,初步文字命題的證明方法、基本步驟和書寫格式。
2、過程與方法:會運用等腰三角形的性質和判定進行有關的計算與簡單的證明。
3、情感態度與價值觀:逐步學會分析幾何證明題的方法及用規范的數學語言表述證明過程。
教學重點:等腰三角形的性質與判定定理的證明
教學難點:證明過程的書寫格式,用規范的符號語言描述證明過程
教學媒體:多媒體
(一)回顧知識
1、什么叫證明?什么叫定理?
2、證明與圖形有關的命題,一般步驟有哪些?
3、我們初中數學中,選用了哪些真命題作為基本事實?此外,還有什么被看作是基本事實?
設計說明:師提出問題,回顧舊知識,達到溫故而知新的目的,學生以小組為單位討論交流
(二)創設情境
觀察圖片
百度圖片搜索_等腰三角形金字塔的搜索結果
1、什么叫做等腰三角形?(等腰三角形的定義)你能用刻度尺華畫一個等腰三角形嗎?
2、你能畫出它的頂角平分線嗎?等腰三角形有哪些性質?
3、上述性質你是怎么得到的?(不妨動手操作做一做)
4、這些性質都是真命題嗎?能否用從基本事實出發,對它們進行證明?
(三)探索活動
1、合作與討論:說明你所畫的三角形是等腰三角形。證明:等腰三角形的兩個底角相等。
2、思考與討論:說明你所畫的是頂角的平分線。
怎樣證明:等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。
3、通過上面兩個問題的證明,我們得到了等腰三角形的性質定理。
定理:等腰三角形的兩個底角相等,(簡稱:“等邊對等角”)
等邊對等角_百度百科
設計說明:引導學生動手操作,讓學生真正成為學習的主人,教師是數學學習的引導者,教師引導學生思考探究,逐步嘗試運用說理的方式進行說明,教師引導學生,文字語言,
圖形語言和幾何語言間的互相轉換。 已知:如圖,在△abc中,ab=ac 求證:∠b=∠c
定理:等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合,(簡稱:“三線合一”) a
bd c4、你能寫出上面定理的符號語言嗎?
5、總結
三角形的特性一教學設計篇二
v 《等腰三角形》是冀教版八年級數學第十五章第五節的教學內容,等腰三角形這節課在教學中起著比較重要的作用,它是對三角形的性質的呈現。利用軸對稱變換,探索等腰三角形的性質是本節課的主要內容。在以往的教科書中,等腰三角形的有關內容一般安排于介紹三角形的內容之中,利用三角形的全等研究等腰三角形的性質,而本書中,等腰三角形的有關內容安排在軸對稱變換之后,在掌握了軸對稱的相關性質之后,通過實驗、觀察,發現等腰三角形的性質,再利用三角形的全等的知識給以證明
1、知識與技能:了解等腰三角形的概念,探索并掌握等腰三角形的性質;
2、數學思考:使學生經歷通過觀察、實驗、探究、歸納、推理、證明的認識圖形的全過程,上實驗幾何與論證幾何有機結合;
3、情感態度與價值觀:通過剪紙等活動,培養學生的實驗意識和探索精神,使學生進一步認識到數學與現實生活的密切聯系,感受數學的嚴謹性以及結果的確定性。
1、重點:等腰三角形的性質
2、難點:“等邊對等角”的證明
動手體驗、小組、討論、合作、交流、探究驗證師生互動
1、教具:長方形紙,剪刀,幻燈片。
2、學具:長方形紙,剪刀。
投影儀
一、聯系生活實際,創設問題情境。激發學生興趣,導入新課
師:同學們:我們在剪紙中欣賞了軸對稱圖形帶給我們的享受,中外建筑中也洋溢著軸對稱圖形的藝術氣息,國旗及各種標志中軸對稱圖形又向我們展示著它獨特的社會含義,而我們親自動手實踐中又體會了軸對稱圖形帶給我們的二次驚喜!今天老師給大家帶來了這個(展示折紙-----飛機),你們喜歡折紙嗎?一頁普普通通的紙經過我們靈巧的雙手就可以變成飛機、小船和各種有趣的動物建筑特等,其實通過折紙我們還可以發現很多數學知識!下面就讓我們折一折,剪一剪,看看會有什么發現?
學生活動:要求:
(1)拿出事先準備好的長方形紙片,對折,使兩部分重合。
(2)對折出一角,沿折痕撕開或剪開,你得到了什么圖形?
師:板書: 15.5 等腰三角形
師:為了更好的掌握這節課的知識,老師把咱們班分了六組,設計了幾個環節來完成,希望同學們踴躍的參與各個環節中來,好不好?
第一環節:精彩回放《投影1》
要求:全班分六組,各組在最短的時間各顯其能,展示自己的才華回答方式為搶答
問題:
1、在等腰三角形abc中,請你介紹
一下哪個是等腰三角形的腰、底邊、頂角和底角?
2、你知道等腰三角形的哪些知識?
給同學們介紹一下?
(1、三角形的兩邊之和大于第三邊2、內角和為180度等)
師:各組同學在這個環節中表現的非常出色,連老師也為你們的成功感到驕傲,希望下一個環節再接再勵。(教師給予鼓勵性的評價)
在初中研究一個圖形的性質,一般都從對稱性、角、邊、角平分線來探究,為了使同學們都成為探究者,請進入第二環節(投影)
第二環節:探究等腰三角形的邊、角
師:拿出剪好的等腰三角形觀察說出邊和角的特點?你是怎樣得到的?各小組談見解
生:1、等腰三角形兩腰相等 2、等腰三角形兩底角相等
幾何格式:∵ ab=ac ∴∠b=∠c
學生活動:為了培養學生的思維,啟發他們從1、度量法2折疊法、3證全等法、三個方面來驗證等腰三角形兩底角相等這一性質
師:利用等腰三角形的邊和角的性質可以幫助我們解決一些簡單的計算題和證命題《投影2》
要求:各組出一名同學回答,答對給各組加1分
1、如果等腰三角形的一個底角75°那么它的頂角等于( )度?
2、如果等腰三角形的一個角為90°那么其余兩角( )度?
3、如果等腰三角形的一個角為100°那么其余兩角( )度?
4、兩邊長為10和8,則第三邊長是( )?
學生總結解題方法:要求:搶答并加分
(1)等腰三角形中頂角與底角的關系:頂角十 2 ×底角=180°
(2)推論:等邊三角形三個內角相等,每一個內角都等于60°(板書)
結論:在等腰三角形中
1、當一內角是銳角時兩種情況。
2、直角或鈍角時一種情況
師:各組同學表現的非常出色,解題的技巧總結的很好,讓我們帶著勝利的喜悅竟如第三個環節
第三個環節:探討等腰三角形的對稱性
學生活動:拿出剪好的等腰三角形猜想:
1、 等腰三角形是軸對圖形嗎?它有幾條對對稱軸?
2、 請同學們動手畫出頂角平分線、底邊的高線、底邊的中線有什么特征?
學生回答:
1、 等腰三角形是軸對稱圖
第四個環節:智者闖關
規則:各組可搶答比一比,賽一賽哪一隊的同學能夠順利過關
現在是不是感覺數學網為大家準備的初二上冊數學等腰三角形教學計劃很關鍵呢?歡迎大家閱讀與選擇!
三角形的特性一教學設計篇三
1、知識與能力
了解等腰三角形的有關概念,探索并掌握等腰三角形的性質;能夠用等腰三角形的知識解決相應的數學問題。
2、過程與方法
通過對性質的探究活動和例題的分析,培養學生多角度思考問題的習慣,提高學生分析問題和解決問題的能力。
3、情感、態度與價值觀
通過引導學生對圖形的觀察、發現,激發學生的好奇心和求知欲,并在運用數學知識解答問題的活動中獲取成功的體驗,建立學習的自信心。
等腰三角形的性質的探索及應用。
等腰三角形三線合一的性質的理解、證明及其應用。
1、出示人字型屋頂的圖片(55頁),提問:屋頂被設計成了哪種幾何圖形?
2、小學我們已經初步認識了等腰三角形,這節課我們來具體研究等腰三角形的性質。
1、動手操作
如圖,把一張長方形的紙按圖中虛線對折,并剪去陰影部分,再把它展開,得到的△abc有什么特征?
學生課前動手操作,剪出圖形,課上從剪出的圖形觀察△abc的特點,可以發現ab=ac。
學生總結出等腰三角形的概念:有兩邊相等的三角形叫作等腰三角形,相等的兩邊叫作腰,另一邊叫作底邊,兩腰的夾角叫作頂角,底邊和腰的夾角叫作底角。
找出手中圖形的腰、底邊、頂角、底角(△abc中,若ab=ac,則△abc是等腰三角形,ab、ac是腰、bc是底邊、∠a是頂角,∠b和∠c是底角。)
2、探究問題
(1)剛才剪出的等腰三角形abc是軸對稱圖形嗎?它的對稱軸是什么?
學生思考、回顧剪紙過程,動手把等腰三角形abc沿折痕對折,容易回答出⊿abc是軸對稱圖形,折痕ad所在的直線是它的對稱軸
(2)把剪出的△abc沿折痕ad對折,找出其中重合的線段和角,填入下表:
重合的線段重合的角
(3)從上表中你能發現等腰三角形具有什么性質嗎?說一說你的猜想。
學生經過觀察,獨立完成上表,然后小組討論交流,從表中總
結等腰三角形的性質。
引導學生歸納:
性質1 等腰三角形的兩個底角相等(簡寫成“等邊對等角”);
性質2 等腰三角形頂角平分線、底邊上的中線、底邊上的高互相重合。(三線合一)
性質3 等腰三角形是軸對稱圖形,對稱軸為頂角角平分線(或底邊上的高,或底邊上的中線)所在直線。
1、性質的證明思路
通過上面折疊的過程的啟發,你能利用三角形的全等來證明這些性質嗎?
學生:我們可以通過作出等腰三角形的對稱軸,得到兩個全等的三角形,從而利用三角形的全等來證明這些性質。 小組交流,展示證明思路。
(1)性質1(等腰三角形的兩個底角相等)的條件和結論分別是什么?用數學符號如何
表達條件和結論?如何證明?
教師引導學生根據猜想的結論畫出相應的圖形,寫出已知和求證,師生共同分析證明思路,強調以下兩點:
①利用三角形的全等來證明兩角相等,為證∠b=∠c,需證明以∠b、∠c為元素的兩個三角形全等,需要添加輔助線構造符合證明要求的兩個三角形。
②添加輔助線的方法有很多種,常見的有作頂角∠bac的平分線,或作底邊bc上的中線,或作底邊bc上的高等,讓學生選擇一種輔助線并完成證明過程。
(2)回顧性質1的證明方法,你能用這種方法證明性質2(等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合)嗎?
讓學生模仿證明性質2,并鼓勵學生用多種方法證明。
問題:如圖,已知△abc中,ab=ac。
(1) 求證:∠b=∠c;
(2)
(3) ad平分∠a,ad⊥bc。
(4)
學生在獨立思考的基礎上進行討論,尋找解決問題的辦法,若證∠b=∠c,根據全等三角形的知識可以知道,只需要證明這兩個角所在的三角形全等即可,于是可以作輔助線構造兩個三角形,做bc邊上的中線ad,證明△abd和△acd全等即可,根據條件利用“邊邊邊”可以證明。
2、證明過程
讓學生充分討論,交流,展示后書寫證明過程
證明:方法一 作底邊bc的中線ad
在△abd和△acd中
所以△abd≌△acd(sss),所以∠b=∠c,∠bad=∠cad,∠adb=∠adc=90°。
3、幾何符號語言表述
如圖,在△abc中
性質1:∵ab=ac,∴ = 。
性質2:
1∵ab=ac,∠bad=∠cad ∴bd = , ⊥ 。
2∵ab=ac,bd=cd ∴∠bad= , ⊥ 。
3∵ab=ac,ad⊥bc ∴∠bad= , bd= 。
4、典例分析
如圖,△abc中,ac=bc,cd是∠acb的平分線,ad=4cm,∠b=30°,求ab的長及∠bcd的度數。
每個小組說說自己的收獲
1、等腰三角形的定義及相關概念。
2、等腰三角形的性質。
1、等腰三角形頂角為1500,那么它的另外兩個角的度數分別是 。
2、等腰三角形的一個內角為500,則另外兩個角的度數分別是 。
3、在等腰△abc中,若ab=3,ac=7,則△abc的周長為 。
4、如圖,在△abc中,ab=ac,∠1=∠2,bd=be,且∠a=1000,則∠dec= 。
三角形的特性一教學設計篇四
1、 本節內容是七年級下第九章《軸對稱》中的重點部分,是等腰三角形的第一節課,由于小學已經有等腰三角形的基本概念,故此節課應該是在加深對等腰三角形從軸對稱角度的直觀認識的基礎上,著重探究等腰三角形的兩個定理及其應用,如何從對稱角度理解等腰三角形是新教材和舊教材完全不同的出發點,應該重新認識,把好入門的第一課。
2、 等腰三角形是在第八章《多邊形》中的三角形知識基礎上的繼續深入,如何利用學習三角形的過程中已經形成的思路和觀點,也是對理解“等腰”這個條件造成的特殊結果的重要之處。
3、 等腰三角形是基本的幾何圖形之一,在今后的幾何學習中有著重要的地位,是構成復雜圖形的基本單位,等腰三角形的定理為今后有關幾何問題的解決提供了有力的工具。
4、 對稱是幾何圖形觀察和思維的重要思想,也是解決生活中實際問題的常用出發點之一,學好本節知識對加深對稱思想的理解有重要意義。
5、 例題中的幾何運算,是數形結合的思想的`初步體驗,如何在幾何中結合代數的等量思想是教學中應重點研究的問題。
6、 新教材的合情推理是一個創新,如何把握合情推理的書寫及重點問題,本課中的例題也進一步做了示范,可以認真研究。
7、 本課對學生的動手能力,觀察能力都有一定的要求,對培養學生靈活的思維,提高學生解決實際問題的能力都有重要的意義。
8、 本課內容安排上難度和強度不高,適合學生討論,可以充分開展合作學習,培養學生的合作精神和團隊競爭的意識。
1、 授課班級為平行班,學生基礎較差,教學中應給予充分思考的時間,謹防填塞式教學。
2、 該班級學生在平時訓練中已經形成了良好的合作精神和合作氣氛,可以充分發揮合作的優勢,兼顧效率和平衡。
3、 本班為自己任課的班級,平時對學生比較了解,在解決具體問題的時候可以兼顧不同能力的學生,充分調動學生的積極性。
等腰三角形的相關概念,兩個定理的理解及應用。
理解對稱思想的使用,學會運用對稱思想觀察思考,運用等腰三角形的思想整體觀察對象,總結一些有益的結論。
體會數學的對稱美,體驗團隊精神,培養合作精神。
1、等腰三角形對稱的概念。
2、“等邊對等角”的理解和使用。
3、“三線合一”的理解和使用。
1、等腰三角形三線合一的具體應用。
2、等腰三角形圖形組合的觀察,總結和分析。
主要教學手段及相關準備:
1、使用導學法、討論法。
2、運用合作學習的方式,分組學習和討論。
3、運用多媒體輔助教學。
4、調動學生動手操作,幫助理解。
1、多媒體課件片斷,輔助難點突破。
2、學生課前分小組預習,上課時按小組落座。
3、學生自帶剪刀,圓規,直尺等工具。
4、每人得到一張印有“長度為a的線段”的紙片。
依據教學目標和學生的特點,依據教學時間和效率的要求,在此課教學方法和教學模式的設計中我主要體現了以下的設計思想和策略:
1、 回歸學生主體,一切圍繞著學生的學習活動和當堂的反饋程度安排教學過程。
2、 原則性和靈活性相結合,既要完成教學計劃,在教學過程中又可以根據現實的情況,安排問題的難度,體現一些靈活性。
3、 教學的形式上注重個體化,充分給予學生討論和發表意見的機會,注重學習的參與性,努力避免以教師活動為主體的教學過程。