91夜夜人人揉人人捏人人添-91一区二区三区四区五区-91伊人久久大香线蕉-91在线电影-免费a网址-免费v片网站

當前位置:網站首頁 >> 作文 >> 因數與倍數教學設計課(模板10篇)

因數與倍數教學設計課(模板10篇)

格式:DOC 上傳日期:2023-12-22 04:40:05
因數與倍數教學設計課(模板10篇)
時間:2023-12-22 04:40:05     小編:紫薇兒

在日常學習、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。相信許多人會覺得范文很難寫?下面我給大家整理了一些優秀范文,希望能夠幫助到大家,我們一起來看一看吧。

因數與倍數教學設計課篇一

一、創設情境,明確相互依存的關系。

1、師:同學們,我們人與人之間存在著各種關系,比如說(指某位同學)他同他爸爸是什么關系呢?(父子關系)老師和你們是——師生關系。

師:“老師是師生關系”可以這樣說嗎?為什么?

生:師生關系是指老師和學生之間的相互關系,不能單獨說。師:是呀,人與人之間的關系是相互的,在數學王國里,也有一些存在著相互依存關系的數,這節課我們就一起來學習。

2、談話導入:

3×4=1。

2(2)擺2行,一行擺6個。

2×6=12。

(3)擺1行,一行擺12個。

1×12=12師:一行擺5個可以嗎?一行擺7個呢?師:大家仔細觀察這些算式,它里面藏著許多小秘密,這就是我們今天這節課要探究的因數和倍數。(板書課題)。

師:誰能用2×6=12像這樣說一說因數和倍數嗎?(指生匯報)同桌說一說1×12=12的因數和倍數。

師:現在你能快速的說出12所有的因數嗎?

(1和12、2和6、3和4)師:為了研究的需要,一般將它們從小到大排列。大家一起說,老師記下來。

學生回答,老師板書(1、2、3、4、6、12)。

師:像這樣按照一定的順序,把所有的可能一一列舉出來,最終找到答案的方法,在數學上叫作列舉法。

(課件出示:0.3×40=12)師:0.3乘40也等于12,我們這樣說:0.3是12的因數,可以嗎?(不可以)。

師小結(出示課件):我們研究因數和倍數時,所指的數是自然數,0除外。

4、找出24所有的因數。

師:現在大家對因數和倍數有了一定的認識了,下面拿出你的練習本,寫出24所有的因數,咱們比一比誰的方法最巧妙,能做到既不重復也不遺漏。先獨立思考,然后把你的想法在小組內說一說。

(生交流找因數的方法)生匯報:師:對比三個同學的方法,有什么相同點?(都是用乘法算式找因數)你喜歡哪種方法?為什么?(強調有序的方法)。

師講解方法:按順序的寫出積是24的乘法算式,然后依次一對一對地找,這樣既不重復也不遺漏。

5、即時小練習。

師:這么好的方法我們得用一用,你能找出16的因數嗎?你能快速說出16的因數嗎?(出示課件:1、16、2、8、4)重復的只保留一個。

師:剛才我們找出了12的因數、24的因數和16的因數,仔細觀察這些數的因數,你有什么發現?(一個數的因數的個數是有限的,最小的因數是1,最大的因數是它本身)看來你是一位既會觀察又會思考的同學,我建議此處應該有掌聲。

6、游戲鞏固。

師:大家的表現真是太精彩了,玩個猜數游戲放松一下怎么樣?(出示課件猜數游戲)。

7、找倍數的方法以及一個數的倍數的特征。

師:能告訴我你為什么停下來了呢?(寫不完)那怎么辦(省略號)現在誰還給大家說一說你的想法。

生匯報:師:用這個方法你能分別找出5的倍數、9的倍數嗎?(生匯報)師:在大家的共同努力下,我們找出了4、5、9的倍數,仔細觀察,你能發現什么?(板書:一個數的倍數是無限的,最小的倍數是它本身,沒有最大的倍數)(說的怎么樣?掌聲送給他吧)。

三、練習鞏固。

師:因數和倍數的知識我們研究完了,敢不敢接受挑戰?

1、判斷。

2、分別找出18和20的所有因數。

四、數學文化。

師:其實,在我們的數學中,還存在著一些神奇的數。

(課件出示:50、60、70、80、90、100)猜一猜這些數的因數的個數,哪個數的因數最多?(生猜)(師出示結果)原來一個數的因數的多少與數的大小無關,我們知道:1分=60秒1時=60分,將60作為時間的進率,是因為60的因數多。

數學上還有一種數:例如6的因數是1、2、3、6,去掉它本身,1+2+3=6;28的因數是1、2、4、7、14、28去掉它本身,1+2+4+7+14=28,數學上將這樣的數叫做完美數,完美數非常稀少,至今數學家只發現了29個完美數。

五、總結收獲。

師:好了,回想一下我們本節課學習的內容,說一說你有哪些收獲。

因數與倍數教學設計課篇二

師:在寫12的因數時,我們可以一對一對的寫,(課件出示:1、12、2、6、3、4.)也可以從兩頭開始寫(板書:1、2、3、4、6、12.)找全了畫一個句號。

3、過渡:12的因數我們已經會找了,那么你能用學到的知識找到18的因數嗎?試一試,看誰能挑戰成功!

學生嘗試,獨立在本上完成。

教師巡視,找出幾個問題學生和完全寫對的學生的作業,在視頻臺上展示。

學生說如何找全的方法,強化“有序”“一對一對的找”。

板書:18的因數有:1,2,3,6,9,18。

集合圖的形式表示。(課件出示)。

4、及時反饋:寫自己學號的因數。

學生在學號紙上獨立完成,指名板演2的因數,24的因數,25的因數,1的因數。

做完的同學,互相檢查糾錯。

師:誰剛才幫別人找到錯誤了?(評價:你已經熟練的掌握了找因數的方法,真棒!還有誰是最棒的?祝賀你們)。

學生說出“24”和“25”的最小因數和最大因數各是多少。

通過找這些數的因數,從中你發現了什么?學生回答:一個數的最小因數是1,最大因數是它本身。

其他同學根據發現的規律自己檢驗,并用彩筆圈起來。

小結:雖然一個數,它因數的個數有多有少,但最小的因數是1,最大因數是它本身。1的因數只有1。因為一個數的因數有最大和最小,所以個數是有限的。(板書在表格里)。

四、找一個數的倍數。

1、過渡:我們已經學會了找一個數的因數,那么怎樣找一個數的倍數呢?你能像找一個數的因數那樣有序的找嗎?相信這個問題也一定難不倒大家,咱們先來試一個簡單的,找2的倍數,看你能找多少個。

2、學生獨立找,找好后在小組中交流。

3、匯報展示,交流方法。

引導:你能按從小到大的順序找2的倍數嗎?能寫得完嗎?怎么辦?

明確方法:用2分別乘1、2、3、4……得到的積都是2的倍數。

4、表示方法:2的倍數有2,4,6,8,10,…(一般寫完前5個,就可以用省略號表示);集合圖。

5、寫出自己學號的倍數。

學生獨立完成,指名兩生板演(3的倍數,5的倍數,1的倍數),糾正錯誤。

小組合作:在找一個數的倍數時,你有什么發現?

交流匯報:一個數的最小倍數是它本身,沒有最大的倍數,個數是無限的。

因數與倍數教學設計課篇三

2.2、5、3的倍數的特征。

3.質數和合數。

二、教學目標。

1.掌握因數、倍數、質數、合數等概念,知道有關概念之間的聯系和區別。

2.通過自主探索,掌握2、5、3的倍數的特征。

3.逐步培養學生的數學抽象能力。

三、編排特點。

1.精簡概念,減輕學生記憶負擔。

(1)不再出現“整除”概念,直接從乘法算式引出因數和倍數的概念。

(2)不再正式教學“分解質因數”,只作為閱讀性材料進行介紹。

(3)公因數、最大公因數、公倍數、最小公倍數移至“分數的意義和性質”單元,作為約分和通分的知識基礎,更突出其應用性。

2.注意體現數學的抽象性。

數學知識本身具有抽象性。學生到了高年級也應注意培養其抽象思維。

1.加強對概念間相互關系的梳理,引導學生從本質上理解概念,避免死記硬背。

從因數和倍數的含義去理解其他的相關概念。

2.要注意培養學生的抽象思維能力。

教學目標:

1、學生掌握找一個數的因數,倍數的方法;

2、學生能了解一個數的因數是有限的,倍數是無限的;

3、能熟練地找一個數的因數和倍數;

4、培養學生的觀察能力。

教學重點:掌握找一個數的因數和倍數的方法。

教學難點:能熟練地找一個數的因數和倍數。

教學過程:

一、引入新課。

1、出示主題圖,讓學生各列一道乘法算式。

2、師:看你能不能讀懂下面的算式?

出示:因為2×6=12。

所以2是12的因數,6也是12的因數;

12是2的倍數,12也是6的倍數。

3、師:你能不能用同樣的方法說說另一道算式?

(指名生說一說)。

師:你有沒有明白因數和倍數的關系了?

那你還能找出12的其他因數嗎?

4、你能不能寫一個算式來考考同桌?學生寫算式。

師:誰來出一個算式考考全班同學?

5、師:今天我們就來學習因數和倍數。(出示課題:因數倍數)。

齊讀p12的注意。

二、新授:

(一)找因數:

1、出示例1:18的因數有哪幾個?

學生嘗試完成:匯報。

(18的因數有:1,2,3,6,9,18)。

師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)。

師:18的因數中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。

2、用這樣的方法,請你再找一找36的因數有那些?

匯報36的因數有:1,2,3,4,6,9,12,18,36。

師:你是怎么找的?

舉錯例(1,2,3,4,6,6,9,12,18,36)。

師:這樣寫可以嗎?為什么?(不可以,因為重復的因數只要寫一個就可以了,所以不需要寫兩個6)。

仔細看看,36的因數中,最小的是幾,最大的是幾?

看來,任何一個數的因數,最小的一定是(),而最大的一定是()。

3、你還想找哪個數的因數?(18、5、42……)請你選擇其中的一個在自己的練習本上寫一寫,然后匯報。

4、其實寫一個數的因數除了這樣寫以外,還可以用集合表示:如18的因數。

1、2、3、6、9、18。

小結:我們找了這么多數的因數,你覺得怎樣找才不容易漏掉?

從最小的自然數1找起,也就是從最小的因數找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。

(二)找倍數:

1、我們一起找到了18的因數,那2的倍數你能找出來嗎?

匯報:2、4、6、8、10、16、……。

師:為什么找不完?

你是怎么找到這些倍數的?(生:只要用2去乘1、乘2、乘3、乘4、…)。

那么2的倍數最小是幾?最大的你能找到嗎?

2、讓學生完成做一做1、2小題:找3和5的倍數。

匯報3的倍數有:3,6,9,12。

師:這樣寫可以嗎?為什么?應該怎么改呢?

改寫成:3的倍數有:3,6,9,12,……。

你是怎么找的?(用3分別乘以1,2,3,……倍)。

5的倍數有:5,10,15,20,……。

師:表示一個數的倍數情況,除了用這種文字敘述的方法外,還可以用集合來表示。

2的倍數3的倍數5的倍數。

2、4、6、8……3、6、9……5、10、15……。

將本文的word文檔下載到電腦,方便收藏和打印。

因數與倍數教學設計課篇四

1 讓學生理解倍數和因數的意義,掌握找一個非零自然數的倍數與因數的方法,發現一個非零自然數的倍數和因數中最大的數、最小的數以及一個非零自然數的倍數與因數個數的特征。

2 讓學生初步意識到可以從一個新的角度,即倍數和因數的角度來研究非零自然數的特征及其相互關系,培養學生觀察、分析與抽象概括的能力,體會數學學習的奇妙,對數學產生好奇心。

教學重點:理解倍數和因數的意義。

教學難點:從倍數和因數的意義出發,尋找一個非零自然數的倍數與因數。

一、直接導入

師:自然數是我們在數的王國中認識的第一種數,今天我們將從一個特定的角度,即倍數和因數的角度來研究自然數的特征及其相互關系。(板書課題:倍數和因數)

二、教學倍數和因數的意義

(屏幕出示12個完全相同的正方形)

生:我可以拼出一個3×4的長方形。

師:你們猜猜看,這會是一個什么樣的長方形?

生:每排擺3個正方形,擺4排;或每排擺4個正方形,擺3排。(課件演示學生所猜的長方形,并讓學生明白這兩種拼法其實是相同的)

生:我還可以拼出一個2×6的長方形。

生:我還可以拼出一個1×12的長方形。(師問法同上,略)

師:同學們可別小看這三道算式,今天我們學習的內容,就將從研究這三道乘法算式拉開帷幕。

師:根據3×4=12,我們可以說(屏幕出示):12是3的倍數,12也是4的倍數;3是12的因數,4也是12的因數。

師:同學們一起來讀一讀,感受一下。

師:你讀懂了些什么?(引導學生感知什么是倍數、什么是因數,即倍數和因數的意義;明白在乘法算式中,積就是兩個乘數的倍數,兩個乘數就是積的因數)

師:請你從6×2=12和12×1=12這兩道算式中任選一題,用上面的話說一說。

師(出示18÷3=6):誰是誰的倍數?誰是誰的因數?為什么?

生:因為18/3=6可以改寫成3×6=18,所以18是3和6的倍數,3和6是18的因數。(引導學生明白根據乘除法的互逆關系,在除法算式中也可以說誰是誰的倍數、誰是誰的因數)

屏幕出示:4是因數,24是倍數。

師:這句話對嗎?(讓學生理解倍數和因數是兩個數之間的相互依存關系,必須說誰是誰的倍數、誰是誰的因數)

師:我們再看屏幕上這三道乘法算式(1×12=12、2×6=12、3×4=12),善于觀察的同學一定發現在這三道乘法算式中。我們其實已經找到了12的所有因數,你知道都有哪些嗎?(引導學生說一說)

屏幕出示一組數:36、4、9、0、5、2。

師:請你從這組數中任選兩個數,用倍數和因數的關系來說一說。(生可能會選36和4、36和9、4和2這幾組數)

設疑:

(1)為什么不選0呢?(讓學生理解倍數和因數是針對非零的自然數)(屏幕演示將“0”去掉)

(2)為什么不選5呢?(例如36和5,因為找不到一個自然數和5相乘能得到36,或者36除以5有余數)(屏幕演示將“5”去掉)

(3)去掉了0和5,剩下的這些數和36有什么關系呢?(它們都是36的因數,或36是它們的倍數;當然,36也是36的因數,36也是36的倍數)

三、探討找一個數的因數的方法

生:容易漏掉或重復。

師:你們有沒有什么好辦法,能一個不落地將36的所有因數都找到呢?同學們可以獨立完成這個任務,也可以同桌的兩位同學合作完成。如果你全部找到了,就請將36的所有因數寫在練習紙上。同時將你找因數的方法寫在橫線的下方。(教師巡視,學生討論交流)

展示學生的作品,學生可能出現的答案有:

(2)利用36÷1=36,36÷2=18……也可以得出1、36、2、18、3、12、4、9、6等數都是36的因數。

在寫法上,可能出現的答案為1、36、2、18、3、12、4、9、6(一對一對地寫),或按照從小到大的順序寫,即1、2、3、4、6、9、12、18、36。然后引導學生比較這兩種寫法的不同。將方法優化:運用除法算式一對一對地找一個數的因數更為簡便,并且不重復、不遺漏,做到答案的完整性;在寫的時候,可以一頭一尾地寫,這樣可以做到答案的有序性。(板書:有序、完整)

2 探討一個數的因數的特征。

課件出示12的因數、15的因數和36的因數。(從小到大排列)

課件出示描述一個非零自然數的因數的特征的表格(如下),學生討論、交流后再反饋。

師(小結):一個非零自然數的最大因數是它本身,最小因數是1,因數的個數是有限的。

四、探討找一個數的倍數的方法

1 師:我們已經掌握了如何有序地、完整地找出一個非零自然數的所有因數的方法。如果讓你找出一個數的所有倍數,你會找嗎?(生:會)那么,我們就一起來找找3的倍數。(學生試著找出3的倍數,教師巡視,對有困難的學生給予幫助)

2 師:你是怎樣有序地、完整地找出3的倍數的?

生:用3分別乘1、2、3……得出3的倍數。

生:用3依次地加3得到3的倍數。

師:你認為哪種方法能更迅速地找出3的倍數?(學生討論交流)

師:3的倍數能找得完嗎?(生:找不完)那么,可以怎樣表示3的倍數的個數呢?(生:用省略號表示)(相機板書:3、6、9、12、15……)

3 寫出30以內5的倍數。(做在練習紙上)

4 課件出示3的倍數、4的倍數、5的倍數,讓學生從最大倍數、最小倍數、倍數的個數三個方面去描述一個數的倍數的特征(見下表)。

師(小結):一個非零自然數的最小倍數是它本身,沒有最大的倍數,所以倍數的個數是無限的。

五、組織游戲,深化認識

游戲——請到我家來做客

(每位學生的手中,都有一張寫有該名學生的學號卡片)

課件演示并配有話外音:春天來了,濃濃的春天氣息讓森林里好客的小動物們,紛紛拿出自己最珍貴的食物款待大家。

(1)屏幕上出現了可愛的小狗向同學們走來(配音):24的因數是我的朋友。如果你卡片上的數是24的因數,歡迎你,我的朋友!(卡片上的數若符合要求,就請這位學生站起來)

(2)屏幕上出現了笨笨的小豬向同學們揮手(配音):我邀請的朋友是5的倍數,喜歡我,就快快來吧!

(3)瞧!可愛的小貓咪也來了。(屏幕上出現了俏皮、可愛的小貓咪)配音:如果你卡片上的數是1的倍數,請來我家做客吧!

(每位學生卡片上的數都符合要求,所以全班學生都站了起來)

師:小貓咪這么好客,老師也想去她家做客。你們來為老師想一個符合要求的數,好嗎?(生答略)

師:是不是所有的自然數都可以呢?

生:除了0。

屏幕出示:所有非零自然數都是1的倍數。

(4)配音:威嚴的老虎來了!它請的朋友很特別,它是所有非零自然數的因數。這個數是幾呢?(生討論交流)

屏幕出示:只有1才符合要求,因為1是所有非零自然數的因數。

六、挑戰自我,拓展升華

師:雖然我們只合作了這短短的三十分鐘,但老師已經深深感到我們這個班的同學非常聰明,不僅善于觀察,而且愛動腦筋,所以老師特別準備了一個富有挑戰性的節目想考考大家,你們敢不敢接受挑戰?(生:敢!)

挑戰——你猜、我猜、大家猜i(屏幕演示動畫標題)

(1)20、5、4、3。

答案:去掉3(屏幕演示隱去“3”),剩下的數是20的因數,或20是它們的倍數。

(2)4、12、18、3。

答案有兩種:一是去掉18(屏幕演示隱去“18”),剩下的數便是12的因數,或12是它們的倍數;二是去掉4(屏幕演示隱去“4”),剩下的數便是3的倍數。

七、全課總結

師:通過今天這節課的學習,你有什么收獲?你們學得開心嗎?玩得開心嗎?其實。數學就是這么簡單而有趣,讓我們每天都樂在其中!

總評:

本節課的教學特色是嚴謹靈活、細膩奔放。在“因數和倍數”概念的學習過程中,重視師生情感的交流,注重每個學生的發展,較好地體現了“教師有效引導下學生自主探索”這一教學策略。

1 意義教學引導學生自主構建。

在多次的實踐教學中,發現用12個完全相同的小正方形拼出一個長方形。對于四年級的學生來說非常容易。教材這樣安排的目的,在于幫助學生有意識地感受1和12、2和5、3和4這幾組數之間的有機聯系。

本課中,倍數和因數的意義教學分三個層次:

1 借助三個問題讓學生通過想像及大屏幕的直觀演示,引導學生得出三道乘法算式,同時介紹倍數和因數的含義。

2 通過除法算式找因倍關系。

3 滲透倍數和因數的相互依存性。

2 合理組織教材,將找一個數的因數及其特征教學提前。

尋找一個數的因數是本節課的教學難點,學生往往滿足于答案的尋找,而忽視尋找過程中的思考策略及思維方法。

教學中,教師出示一組數,如36、4、9、0、5、2,讓學生從這組數中任選兩個數,用倍數和因數的關系來說一說。

最后設疑:

(1)為什么不選o呢?(讓學生理解倍數和因數是針對非零的自然數)

(2)為什么不選5呢?(如36和5,因為找不到一個自然數和5相乘能得到36,或者36除以5有余數)

(3)去掉了0和5,剩下的這些數和36有什么關系呢?(它們都是36的因數,或36是它們的倍數)

這樣的改變,既達到預定目的,又為學習找因數做了鋪墊,引發了學生尋找36的因數的濃厚興趣。在引導學生自主探索一個數的因數的特征時,教師讓學生帶著問題去觀察討論:每一個非零自然數的因數的個數是有限的還是無限的?一個非零自然數的最大因數是幾?一個非零自然數的最小因數是幾?以上安排,降低了學生的學習難度。

3 尋找一個數的因數和倍數的方法讓學生自己生成。

在尋找一個數的因數和倍數的過程中。教師將學生推向發現與探索的前臺。

尋找一個數的倍數和因數。方法不是惟一的。教師在肯定各種方法合理性的同時,及時引導學生進行溝通,尋找它們的共同點和聯系,進而比較各種方法之間的優劣,遴選最優方法,提升思維效率。

4 增強游戲中數學思維的含量。

知識在游戲中深化,在挑戰中升華。

本節課以“有效引導下自主探索”為教學策略。以三道乘法算式為線索,以教材文本為依托,以有梯度的游戲活動展開對知識的深化鞏固,并適時、適量引入多媒體輔助教學,將諸多細小的認知活動歸整在一個探究性的課堂自主研究活動中。通過自主觀察、交流發現、共同分享,引領學生經歷“研究與發現”的真實過程。課尾游戲的運用,激發了學生的學習熱情,讓學生以愉快的心情和良好的體驗融入學習活動中,培養了學生用數學眼光看待游戲的意識,大大降低了學生對數學概念學習的枯燥體驗。

因數與倍數教學設計課篇五

教學內容:新人教版小學數學五年級下冊第13~16頁。

教學目標:

1、學生掌握找一個數的因數,倍數的方法;

2、學生能了解一個數的因數是有限的,倍數是無限的;

3、能熟練地找一個數的因數和倍數;

4、培養學生的觀察能力。

教學重點:理解因數和倍數的含義;自主探索并總結找一個數的因數和倍數的方法。

教學難點:自主探索并總結找一個數的因數和倍數的方法;歸納一個數的因數的特點。

教學具準備:學號牌數字卡片(也可讓學生按要求自己準備)。

教法學法:談話法、比較法、歸納法。

快樂學習、大膽言問、不怕出錯!

課前安排學號:1~40號。

課前故事:說明道理:學習最重要的是快樂,要掌握學習的方法。

教學過程:

一、復習。

問:“我們在因數與倍數的學習中,研究的數都是什么數?”(整數)。

誰能說說10的因數,你是怎么想的?

今天,我和大家一道來繼續共同探討“因數與倍數”

二、合作交流、共探新知。

b、探究找一個數的因數的方法(談話法、比較法、歸納法)。

1、誰來說說18的因數有哪些?

學生預設:有的學生可能會說還有6*3,9*2,18*1等,出現這種情況時可以冷一下,讓學生想一想這樣寫的話會出現什么情況,最后讓學生明白一個數的因數是不能重復的。

d、介紹寫一個數因數的方法。

可以用一串數字表示;也可以用集合圈的方法表示。

說一說:

18的因數共有幾個?

它最小的因數是幾?

最大的因數是幾?

2、做一做(在做這些練習時應放手讓學生去做,相信學生的知識遷移與消化新知的能力)。

a、30的因數有哪些,你是怎么想的?

b、36的因數有幾個?你是怎么想的?為什么6*6=36,這里只寫一個因數?

d、讓學生討論:你從中發現了“一個數的因數”有什么相同的地方嗎?

學生總結:

板書:

一個數最小的因數是1;

最大的因數是它本身;

輕松一下:

我們來了解一點小知識:完全數,什么叫完全數呢?就是一個數所有的因數中,把除了本身以外的因數加起來,所得的和恰好是這個數本身,那這樣的數我們就叫它完全數,也叫完美數,比如6~~(學生讀課本14頁完全數的相關知識)。

b、探究找一個數的倍數的方法(談話法、比較法、歸納法)。

因為有了前面探究找一個數因數的方法,在這一環節更可大膽讓學生自己去想,去說,去發現,去歸納。教師只要適當做點組織和引導工作就行。

過渡:大家都很棒!這么快就找出了一個數的因數并總結好了它的規律,現在楊老師想放開手來讓大家自己來學習下面的知識:找一個數的倍數。

a、2的倍數有哪些?你是怎么想的?從1開始做手勢:1*2=2,2*2=4,2*3=6,一倍一倍地往上遞加。

b、那5的倍數有哪些?按從小到大的順序至少寫出5個來,看誰寫得又快又好。

c、對比“一個數的因數”的規律,學生自由討論:一個數的倍數有什么規律呢?

(到這一環節就無需再提問了,要相信學生能夠在類比中找到學習的方法)。

學生總結:

板書:

一個數最小的倍數是它本身;

沒有最大的倍數;

倍數的個數是無限的。

(哦,大家這么聰明啊,不用老師教都會了,看來你們真的是太棒了,這也說明學習要學得輕松就一定要掌握~~方法!)。

c、看樣子大家都滿懷信心了,那老師就用黑板上的兩個例題來考考大家,看大家的觀察能力是不是真的好厲害。

你能從中找出既是18的因數又是2的倍數的數嗎?(計時開始:10,9,8,~~~)。

學生完成后表揚:哇,好厲害!

三、深化練習,鞏固新知。

1、做練習二的第3題。

在題中出示的數字里分別找出8的倍數和9的倍數。

注意“公倍數”概念的初步滲透。

3、做練習二的第6題。

四、通過這堂課的學習,你有什么收獲?

五、布置作業:

六、結束全課:

請學號是2的倍數的同學起立,你們先離場,

不是2的倍數的同學后離場。

18=1×18。

18=2×9。

18=3×6。

因數與倍數教學設計課篇六

1、理解和掌握因數和倍數的概念,認識他們之間的聯系和區別。

2、學會求一個數的因數或倍數的方法,能夠熟練的求出一個數的因數或倍數。

3、知道一個數的因數的個數是有限的,一個數的倍數的個數是無限的。

掌握找一個數的因數和倍數的方法。

理解和掌握因數和倍數的概念。

課件。

師:我和你們的關系是。

生:師生關系。

師:對,我是你們的老師,你們是我的學生,我們的關系是師生關系。是啊,人與人之間的關系是相互的。再比如:我們班的曹雪飛與賀正博之間是同桌關系,他們之間的關系是相互依存的,不能單獨存在,我們可以說曹雪飛是賀正博的同桌,或者說賀正博是曹雪飛的同桌,而不能說曹雪飛是同桌!在數學王國里,在整數乘法中也存在著這樣相互依存的關系,這節課,我們一起探討兩數之間的因數與倍數關系。(板書課題:因數與倍數)。

(設計意圖:先讓學生體會關系,再通過同桌關系讓學生體會相互依存,不能獨立存在,進而為因數與倍數的相互依存關系打下基礎。)。

(一)1、出示主題圖,仔細觀察,你得到了哪些數學信息?

學生說:圖上有兩行飛機,每行六架,一共有12架。(注意培養學生提取數學信息的能力和語言表達能力,即:數學語言要求簡練嚴謹)。

教師:你們能夠用乘法算式表示出來嗎?

學生說出算式,教師板書:2×6=12。

2.出示:因為2×6=12。

所以2是12的因數,6也是12的因數;。

12是2的倍數,12也是6的倍數。

(注:由乘法算式理解因數和倍數相互依存,不能獨立存在。)。

3.教師出示圖2:師:根據圖上的內容,可以寫出怎樣的算式?

3×4=12。

從這道算式中,你知道誰是誰的因數?誰是誰的倍數嗎?(讓學生自己說一說,進而加深因數倍數關系的認識。)。

教師小結:因數和倍數是相互依存的,為了方便,我們在研究因數與倍數時,我們所說的數是整數,一般不包括0.

4、師:誰來說一道乘法算式考考大家。

(指名生說一說)。

5、讓其他學生來說一說誰是誰的因數誰是誰的倍數。

(注:可以讓幾位學生互相說一說。)。

6、看來都難不住你們,那老師來考考你們:18÷3=6在這道算式中,誰來說說誰是誰的因數誰是誰的倍數。

(設計意圖:18÷3=6是為了培養學生思維的逆向性)。

(二)找因數:

出示例1:18的因數有哪幾個?

注意:請同學們四人以小組討論,在找18的因數中如何做到不重復,不遺漏。

學生嘗試完成:匯報。

(18的因數有:1,2,3,6,9,18)。

師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)。

師:18的因數中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。

2、用這樣的方法,請你再找一找36的因數有那些?

匯報36的因數有:1,2,3,4,6,9,12,18,36。

師:你是怎么找的?

舉錯例(1,2,3,4,6,6,9,12,18,36)。

師:這樣寫可以嗎?為什么?(不可以,因為重復的因數只要寫一個就可以了,所以不需要寫兩個6)。

師:18和36的因數中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。

請同學們觀察一個數的因數有什么特點。

在教師引導下,學生總結出:任何一個數的因數,最小的一定是(),而最大的一定是(),因數的個數是有限的。

(設計意圖:培養學生探索、歸納、總結、概括的能力。)。

3、其實寫一個數的因數除了這樣寫以外,還可以用集合表示:如18的因數。

1、2、3、6、9、18。

小結:我們找了這么多數的因數,你覺得怎樣找才不容易漏掉?

從最小的自然數1找起,也就是從最小的因數找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。

(三)找倍數:

1、我們學會找一個數的因數了,那如何找一個數的倍數呢?2的倍數你能找出來嗎?

匯報:2、4、6、8、10、16、……。

師:為什么找不完?

你是怎么找到這些倍數的?

(生:只要用2去乘1、乘2、乘3、乘4、…)。

那么2的倍數最小是幾?最大的你能找到嗎?

2、再找3和5的倍數。

3的倍數有:3,6,9,12,……。

你是怎么找的?(用3分別乘以1,2,3,……倍)。

5的倍數有:5,10,15,20,……。

師:我們知道一個數的因數的個數是有限的,那么一個數的倍數個數是怎么樣的呢?讓學生觀察2、3、5的倍數,說一說一個數的倍數有什么特點。

學生試著總結:一個數的倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數。

通過今天這節課的學習,你有什么收獲?

學生匯報這節課的學習所得。

2、教材第15頁練習二第1題。組織學生獨立完成,然后在小組中互相交流檢查。

因數與倍數教學設計課篇七

(一)知識與技能。

理解因數和倍數的意義以及兩者之間相互依存的關系,掌握找一個數的因數和倍數的方法,發現一個數的倍數、因數中最大的數、最小的數,及因數和倍數個數方面的特征。

(二)過程與方法。

通過整數的乘除運算認識因數和倍數的意義,自主探索和總結出求一個數的因數和倍數的方法。

(三)情感態度和價值觀。

在探索的過程中體會數學知識之間的內在聯系,在解決問題的過程中培養學生思維的有序性和條理性。

二、教學重難點。

教學難點:自主探索有序地找一個數的因數和倍數的方法。

三、教學準備。

教學課件。

教學例1:

1.觀察算式的特點,進行分類。

(1)仔細觀察算式的特點,你能把這些算式分類嗎?

(2)交流學生的分類情況。(預設:學生會根據算式的計算結果分成兩類)。

第一類是被除數、除數、商都是整數;第二類是被除數、除數都是整數,而商不是整數。

(1)同學們,在整數除法中,如果商是整數而沒有余數,我們就說被除數是除數的倍數,除數是被除數的因數。例如,12÷2=6,我們就說12是2的倍數,2是12的因數。12÷6=2,我們就說12是6的倍數,6是12的因數。

(2)在第一類算式中找一個算式,說一說,誰是誰的因數?誰是誰的倍數?

(3)強調一點:為了方便,在研究倍數與因數的時候,我們所說的數指的是自然數(一般不包括0)。

【設計意圖】引導學生從“整數的除法算式”中認識因數和倍數的意義,簡潔明了,同時為學習因數和倍數的依存關系進行有效鋪墊。

(1)獨立完成教材第5頁“做一做”。

(2)我們能不能說“4是因數”“24是倍數”呢?表述時應該注意什么?

【設計意圖】引導學生在理解的基礎上進行正確表述:因數和倍數是相互依存的,不是單獨存在的。我們不能說4是因數,24是倍數,而應該說4是24的因數,24是4的倍數。

4.理解一個數的“因數”和乘法算式中的“因數”的區別以及一個數的“倍數”與“倍”的區別。

(1)今天學的一個數的“因數”與以前乘法算式中的“因數”有什么區別呢?

課件出示:

乘法算式中的“因數”是相對于“積”而言的,可以是整數,也可以是小數、分數;而一個數的“因數”是相對于“倍數”而言的,它只能是整數。

(2)今天學的“倍數”與以前的“倍”又有什么不同呢?

“倍數”是相對于“因數”而言的,只適用于整數;而“倍”適用于小數、分數、整數。

(3)交流匯報。

【設計意圖】“一個數的因數和倍數”與學生已學過的乘法算式中的“因數”以及“倍”的概念既有聯系又有區別,學生比較容易混淆,這也是學習一個數的“因數”和“倍數”意義的難點。通過觀察、對比、交流,引導學生發現一個數的“因數”和乘法算式中的“因數”的區別以及一個數的“倍數”與“倍”的區別。

(二)找一個數的因數。

教學例2:

1.探究找18的因數的方法。

(1)18的因數有哪些?你是怎么找的?

(2)交流方法。

預設:方法一:根據因數和倍數的意義,通過除法算式找18的因數。

因為18÷1=18,所以1和18是18的因數。

因為18÷2=9,所以2和9是18的因數。

因為18÷3=6,所以3和6是18的因數。

方法二:根據尋找哪兩個整數相乘的積是18,尋找18的因數。

因為1×18=18,所以1和18是18的因數。

因為2×9=18,所以2和9是18的因數。

因為3×6=18,所以3和6是18的`因數。

2.明確18的因數的表示方法。

(1)我們怎樣來表示18的因數有哪些呢?怎樣表示簡潔明了?

(2)交流方法。

預設:列舉法,18的因數有:1,2,3,6,9,18。

圖示法(如下圖所示)。

3.練習找一個數的因數。

(1)你能找出30的因數有哪些嗎?36的因數呢?

(2)怎樣找才能不遺漏、不重復地找出一個數的所有因數?

【設計意圖】讓學生通過自主探索、交流,獲得找一個數的因數的不同方法,在練習中體會“一對一對”有序地找一個數的因數,避免遺漏或重復。初步感受一個數的因數的個數是有限的,以及“最大因數、最小因數”的特征。

(三)找一個數的倍數。

教學例3:

1.探究找2的倍數的方法。

(1)2的倍數有哪些?你是怎么找的?

(2)交流方法。

預設:方法一:利用除法算式找2的倍數。

因為2÷2=1,所以2是2的倍數。

因為4÷2=2,所以4是2的倍數。

因為6÷2=3,所以6是2的倍數。……。

方法二:利用乘法算式找2的倍數。

因為2×1=2,所以2是2的倍數。

因為2×2=4,所以4是2的倍數。

因為2×3=6,所以6是2的倍數。……。

(3)2的倍數能寫完嗎?你能繼續找嗎?寫不完怎么辦?

(4)根據前面的經驗,試著表示出2的倍數有哪些?(預設:列舉法、圖示法)。

2.練習找一個數的倍數。

你能找出3的倍數有哪些嗎?5的倍數呢?

【設計意圖】在理解“倍數”的基礎上,讓學生進一步體會有序思考的必要性。初步感受一個數的倍數的個數是無限的,以及“最小倍數”的特征。

(四)一個數的因數與倍數的特征。

1.從前面找因數和倍數的過程中,你有什么發現?

2.討論交流。

3.歸納總結。

預設:一個數的因數的個數是有限的,最小的因數是1,最大的因數是它本身;一個數的倍數的個數是無限的,沒有最大的倍數,最小的倍數是它本身。1是所有非零自然數的因數。

(五)鞏固練習。

1.課件出示教材第7頁練習二第1題。

(1)想一想,怎樣找不會遺漏、不會重復?

(2)哪些數既是36的因數,也是60的因數?

【設計意圖】通過練習,讓學生再次體會“1是所有非零自然數的因數”“一個數最大的因數是它本身”和“一個數的因數的個數是有限的”。同時,滲透兩個數的“公因數”的意義。

2.課件出示教材第7頁練習二第3題。

(1)學生獨立完成,交流答案。

(2)思考:5的倍數有什么特征?

【設計意圖】滲透5的倍數的特征。

3.課件出示教材第7頁練習二第5題。

(1)學生獨立完成,交流答案。

(2)你能改正錯誤的說法嗎?

(六)全課總結,交流收獲。

這節課我們學了哪些知識?你有什么收獲?

因數與倍數教學設計課篇八

(評價:哪個組的同學都做對了,真是好樣的!)。

4、明確范圍:打開書12頁明確因數倍數的范圍。

學生齊讀:為了方便,在研究因數和倍數的時候,我們所說的數指的是整數(一般不包括0)。

師板書:整數、不包括“0”。

三、找一個數的因數。

1、師:通過這些乘法算式,我們找到了12的一些因數,誰能說一說12的因數有哪些?

學生說出,12的因數有6,2,4,3,1,12。

2、師:找完了嗎?怎樣就能不重復、不遺漏,找到所有的因數?

學生可能說出:依據乘法算式,有序的找。(評價:有序的思考是我們數學中一種很重要的思維方式,這位同學很了不起,你們學會了嗎?誰還能再說一說這種方法)。

因數與倍數教學設計課篇九

教學過程:

生:1×12。

師:猜猜看,他每排擺了幾個,擺了幾排?

生:12個,擺了一排。

生:三四十二。

生齊:2×6。

師:張老師來猜測一下同學們腦子里怎么想的,有同學可能想每排擺6個,擺2排。也有同學可能想每排擺2個,擺6排。(屏幕顯示擺法)同樣第二種擺法也可以省。

師:還有不同的想法嗎?每排能擺5個嗎?12個同樣大小的正方形能擺3種不同的乘法算式,千萬別小看這些乘法算式,今天我們研究的內容就在這里。咱們就以第一道乘法算式為例,3×4=12,數學上把3是12的因數,以往我們把他叫約數,現在叫因數,3是12的因數,那4(也是12的因數,)倒過來12是3的倍數,12(也是4的倍數)。同學們很有遷移的能力,這就是我們今天所要研究的因數和倍數。

師:這兒還有兩道乘法算式,先自己說一說誰是誰的因數?誰是誰的倍數?行不行?

師:誰先來?

生說略。

師:剛才在聽的時候發現1×12說因數和倍數時有兩句特別拗口,是哪兩句啊?

生:12是12的因數,12是12的倍數。

生:自然數。

師:而且誰得除外。

生:0。

師:好了,剛才我們已經初步研究了因數和倍數,屏幕顯示:試一試:你能從中選兩個數,說一說誰是誰的因數?誰是誰因數和倍數?行不行?先自己試一試。

3、5、18、20、36。

生說略。

二、探索找因數倍數的方法。

生1:3、18。

師:還有誰?

生2:36。

師:3、18、36都是36的因數,只有這3個嗎?

生1:1。

生2:4。

生3:6。

師:其實要找出36的一個因數并不難,難就難在你有沒有能力把36的所有因數全部找出來?能不能?張老師作一下詳細說明,因為這個問題有點難度,你可以獨立完成也可以同桌完成,下面你選擇你喜歡的方式,可以合作,也可以單干,想一想怎么不遺漏,注意了,當你找出了36的所有因數,別忘了填在作業紙上,如果能把怎么找到的方法寫在下面更好。

學生填寫時師巡視搜集作業。

師:張老師找到了3份不同的作業,大家仔細觀察這三份作業,可有意思了。我把他命名為a、b、c師板書。

a:2、4、13、12、18、36。

b:1、2、4、3、6、9、12、18、36。

c:1、36、2、18、3、12、4、9、6。

師:關于a這種方法你有什么話要說?(學生紛紛舉手)能不能從正面的角度說一說,這個同學找出的因數有沒有值得肯定的地方?(學生沉默)一點都沒有我們值得肯定的地方嗎?你先來。

生1:都對的。

師:有沒有道理?看來要找一個人的優點挺困難的。

生2:寫全了。

生大聲說:沒有!

生:沒有寫全,少了3、6、9。

生:36÷4,只寫了4,沒寫9。

師:他的意思是說用除法來做的話,找一個數的因數,一個個找,還是兩個兩個找?

生齊:兩個兩個找。

生2:先把1寫在頭,36寫在尾,然后再把2寫中間,這樣依次寫下去,這樣比較美觀。

師:張老師提煉出兩個字:“順序”,好象還不僅僅是因為粗心的問題,沒有按照一定的順序。

師:第二個同學有沒有找全,有沒有更好的建議送給他。

生:他應該把4、3調換一下。

師:你想提出抗議嗎?你們覺得有順序嗎?(有)你自己來說?

生:他們那樣還要頭對尾頭對尾的,像這樣直接就可以寫了。

師:有沒有聽明白,也是同樣一對一對出現的。

生:大小沒有排,b大小排完后從小到大很舒服。

師:你看你那個舒服嗎?

生:舒服。

師:正是因為你的質疑,他把方法說了出來。他用了什么?

生:乘法口訣。

師:非常感謝同學們給出的發言,正是你們的發言讓我們感受到了如何尋找一個數的因數,有沒有問題。

生1:找到開始重復就不找了。

生2:我認為應該找到比較接近如5、6,7、8找到比較接近就可以了。

師:體會體會1、學生:36、2、學生:18、3、12、4、9、6這兩個因數在不斷接近,接近到相差無幾。

生:

生:直接找更大數的所有的因數,這個同學很厲害,已經在用分解質因數的方法在找一個因數的個數了。

師:通過剛才的交流,有辦法了嗎?有沒有方法不遺漏。試一個。20。

生齊:1、2、4、5、10、20。

再試一個:15,寫在練習紙上。學生匯報。

師:尋找一個數掌握的不錯,這節課還要研究倍數呢。會找一書的倍數嗎?找一個小一點的,3的倍數,誰來找一個。

生:21、300。

師:你能把3的倍數全部寫下來嗎?

生:不能。太多太多了。

師:那怎么辦?寫不完可以用省略號表示。試試看。

學生練習紙上完成,匯報。

師:同學們雖然找的答案差不多,但腦子里的方法各不相同。我想聽聽你是怎樣找的?

生1:3×1、3×2。

因數與倍數教學設計課篇十

教學內容:義務教育課標實驗教科書青島版數學三年級下冊p109――p110。

教學目標:

知識與技能:使學生結合具體情境初步理解因數和倍數的含義,初步理解因數和倍數相互依存的關系。

過程與方法:使學生依據因數和倍數的含義以及已有乘除法知識,通過嘗試、交流等活動,探索并掌握找一個數的因數和倍數的方法。

情感與態度:使學生在認識因數和倍數以及找一個數的因數和倍數的過程中進一步感受數學知識的內在聯系,提高數學思考的水平。

教學重點:理解因數和倍數的含義。

教學難點:探索并掌握找一個數的因數和倍數的方法。

教學過程:

1、操作:用這12個正方形拼成一個長方形,每排擺幾個,擺了幾排,擺完后在練習本上寫出乘法算式。

匯報:你是怎么擺?算式是什么?

指名說,師板書:1×12=122×6=123×4=12。

師:剛才通過擺不同的長方形,我們得到了3道不同的乘法算式,別小看這3個算式,其實在這里面有許多數學奧秘。今天我們就來研究數學的新奧秘。

師指3×4=12說:因為3×4=12,所以我們就說3是12的因數(板書:因數),4是12的因數;12是3的倍數(板書:倍數);12是4的倍數。

小結:是呀,我們不能直接說誰是因數,誰是倍數,而要清楚的表達出來誰是誰的因數,誰是誰的倍數。看來,因數和倍數是相互依存的(板書:和)。為了方便,在研究因數和倍數時,一般不討論0。

二、探索找一個數的因數的方法。

1、師:看黑板上的3個算式,你能找到12的所有的因數嗎?(學生齊說。)。

問:如果沒有算式,你能找出24所有的因數嗎?先想想怎樣找?然后寫在練習本上。

學生寫一寫,師巡視。

匯報展示:(2人)。

問:你是怎么找的?(學生說方法)。

評價:他找的怎么樣?(學生評一評)。

小結:其實老師就是按從小到大的順序一對一對找的,這樣就能做到既不重復又不遺漏了。看來,有序的思考問題對我們的幫助確實很大。

2、練習。

師:用這種方法寫出18的因數。

匯報:你找的18的因數都有哪些?(指名說,師板書)。

3、發現規律。

問:仔細觀察這幾個數的因數,你能發現什么規律?

小結:一個數的因數最小的是1,最大的是它本身。

三、探索找一個數的倍數的方法。

1、方法。

學生找3的倍數,寫在練習本上。

匯報:指名說,師寫在黑板上。(3的倍數有:3,6,9,12,15……)。

問:你能說的完嗎?寫不完怎么辦?(用省略號)。

你是怎么找的?

評一評:他的方法怎么樣?

問:還有別的方法嗎?

問:怎么找一個數的倍數?

指名說。

師:按從小到大的順序,用3依次去乘1、2、3、4……,乘得的積就是3的倍數。

2、練習。

找出5的倍數,寫在練習本上。

指名說,師板書,問:你是用什么方法找的5的倍數?

3、發現規律。

問:觀察一下,你發現一個數的倍數有什么特點?

師小結:一個數的倍數的個數是無限的,最小的是它本身,沒有最大的。

問:一個數的倍數個數是無限的,一個數的因數的個數呢?(有限)。

(課件出示)。

四、鞏固練習。

1、寫一寫:6的因數、9的因數、50以內7的倍數。

集體訂正。

2、選一選。

8的倍數有哪些?48的因數又有哪些?

學生填一填,集體訂正。

3、數學小知識:完美數。

師:6的因數有(1,2,3,6),把前三個因數相加,你會發現什么?(1+2+3=6)。

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔
a.付費復制
付費獲得該文章復制權限
特價:5.99元 10元
微信掃碼支付
已付款請點這里
b.包月復制
付費后30天內不限量復制
特價:9.99元 10元
微信掃碼支付
已付款請點這里 聯系客服
主站蜘蛛池模板: 国产一级一国产一级毛片 | 久久精品国产第一区二区 | 一本大道香蕉在线观看视频 | 中文字幕日韩在线观看 | 在线a毛片免费视频观看 | 免费国产小视频在线观看 | a毛片免费看 | 久久免费视频99 | 伊人网青青草 | 成人影院在线看 | 日韩在线播放一区 | 日韩欧美视频在线播放 | 天天干天天拍天天射 | 天天透天天插 | 久久精品蜜芽亚洲国产a | 香蕉视视频 | 狠狠躁狠狠躁 | 夜夜操天天摸 | 黄色在线免费观看网址 | 亚洲成年| 成年人免费视频网站 | 亚洲视频久久 | 日韩免费在线视频观看 | 黄色网址视频在线播放 | 国产一区二区三区在线观看免费 | 又黄又爽的美女免费视频 | 亚洲一区 中文字幕 久久 | 婷婷黄色网| bban在线| 又黄又免费的视频 | 日本免费一区二区三区中文 | 久草视频在线免费 | 免费国产一级特黄久久 | 国产大片在线播放 | 国产在线一卡二卡 | 香港三级日本三级人妇网站 | 无遮挡h黄漫动漫在线观看 无遮挡h纯内动漫在线观看 | 婷婷综合在线 | 在线a人片免费观看不卡 | 国产在线精品一区免费香蕉 | 亚洲一级在线 |