總結是在一段時間內(nèi)對學習和工作生活等表現(xiàn)加以總結和概括的一種書面材料,它可以促使我們思考,我想我們需要寫一份總結了吧。怎樣寫總結才更能起到其作用呢?總結應該怎么寫呢?這里給大家分享一些最新的總結書范文,方便大家學習。
人教版小學數(shù)學知識點總結篇一
(1)20以內(nèi)數(shù)的認識。加法和減法。數(shù)數(shù)。數(shù)的組成、順序、大小、讀法和寫法。加法和減法。連加、連減和加減混合式題
(2)100以內(nèi)數(shù)的認識。加法和減法。數(shù)數(shù)。個位、十位。數(shù)的順序、大小、讀法和寫法。兩位數(shù)加、減整十數(shù)和兩位數(shù)加、減一位數(shù)的口算。兩步計算的加減式題。
(二)量與計量
鐘面的認識(整時)。人民幣的認識和簡單計算。
(三)幾何初步知識
長方體、正方體、圓柱和球的直觀認識。
長方形、正方形、三角形和圓的直觀認識。
(四)應用題
比較容易的加法、減法一步計算的應用題。多和少的應用題(抓有效信息的能力)
(五)實踐活動
選擇與生活密切聯(lián)系的內(nèi)容。例如根據(jù)本班男、女生人數(shù),每組人數(shù)分布情況,想到哪些數(shù)學問題。
人教版小學數(shù)學知識點總結篇二
1、圓是平面內(nèi)封閉曲線圍成的平面圖形。
2、圓的特征:外形美觀,易滾動。
3、圓心o:圓中心的點叫做圓心.圓心一般用字母o表示。
圓多次對折之后,折痕的相交于圓的中心即圓心。圓心確定圓的位置。
半徑r:連接圓心到圓上任意一點的線段叫做半徑。在同一個圓里,有無數(shù)條半徑,且所有的半徑都相等。半徑確定圓的大小。
直徑d:通過圓心且兩端都在圓上的線段叫做直徑。在同一個圓里,有無數(shù)條直徑,且所有的直徑都相等。直徑是圓內(nèi)最長的線段。
同圓或等圓內(nèi)直徑是半徑的2倍:d=2r或r=d÷2
4、等圓:半徑相等的圓叫做同心圓,等圓通過平移可以完全重合。同心圓:圓心重合、半徑不等的兩個圓叫做同心圓。
5、圓是軸對稱圖形:如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形是軸對稱圖形。折痕所在的直線叫做對稱軸。
有一條對稱軸的圖形:半圓、扇形、等腰梯形、等腰三角形、角。
有二條對稱軸的圖形:長方形
有三條對稱軸的圖形:等邊三角形
有四條對稱軸的圖形:正方形
有無條對稱軸的圖形:圓,圓環(huán)
6、畫圓
(1)圓規(guī)兩腳間的距離是圓的半徑。(2)畫圓步驟:定半徑、定圓心、旋轉一周。
圍成圓的曲線的長度叫做圓的周長,周長用字母c表示。
1、圓的周長總是直徑的三倍多一些。
2、圓周率:圓的周長與直徑的比值是一個固定值,叫做圓周率,用字母π表示。
即:圓周率π=周長÷直徑≈3.14
所以,圓的周長(c)=直徑(d)×圓周率(π)—周長公式:c=πd,c=2πr
圓周率π是一個無限不循環(huán)小數(shù),3.14是近似值。
3、周長的變化的規(guī)律:半徑擴大多少倍直徑也擴大多少倍,周長擴大的倍數(shù)與半徑、直徑擴大的倍數(shù)相同。
4、半圓周長=圓周長一半+直徑=πr+d
1、圓面積公式的推導
如圖把一個圓沿直徑等分成若干份,剪開拼成長方形,份數(shù)越多拼成的圖像越接近長方形。
圓的半徑=長方形的寬
圓的周長的一半=長方形的長
長方形面積=長×寬
所以:圓的面積=圓的周長的一半(πr)×圓的半徑(r)
s圓=πr×r=πr2
2、幾種圖形,在面積相等的情況下,圓的周長最短,而長方形的周長最長;反之,在周長相等的情況下,圓的面積則,而長方形的面積則最小。
周長相同時,圓面積,利用這一特點,籃子、盤子做成圓形。
3、圓面積的變化的規(guī)律:半徑擴大多少倍,直徑、周長也同時擴大多少倍,圓面積擴大的倍數(shù)是半徑、直徑擴大的倍數(shù)的平方倍。
4、環(huán)形面積=大圓–小圓=πr2-πr2
扇形面積=πr2×n÷360(n表示扇形圓心角的度數(shù))
5、跑道:每條跑道的周長等于兩半圓跑道合成的圓的周長加上兩條直跑道的和。因為兩條直跑道長度相等,所以,起跑線不同,相鄰兩條跑道起跑線也不同,間隔的距離是:2×π×跑道寬度。
一個圓的半徑增加a厘米,周長就增加2πa厘米。
一個圓的直徑增加b厘米,周長就增加πb厘米。
6、任意一個正方形的內(nèi)切圓即圓的直徑是正方形的邊長,它們的面積比是4∶π。
7、常用數(shù)據(jù)
π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7
人教版小學數(shù)學知識點總結篇三
(一)口算除法
1、整十數(shù)除整十數(shù)或幾百幾十的數(shù)的口算方法。
(1)算除法,想乘法;比如60÷30=( )就可以想(2)×30=60
(2)利用表內(nèi)除法計算。利用除法運算的性質(zhì):將被除數(shù)和除數(shù)同時擴大或縮小相同的倍數(shù),商不變。如:200÷50想20÷5=4,所以200÷50=4。
2、兩位數(shù)除兩位數(shù)或三位數(shù)的估算方法:除法估算一般是把算式中不是整十數(shù)或幾百幾十的數(shù)用“四舍五入”法估算成整十數(shù)或幾百幾十的數(shù),再進行口算。注意結果用“≈”號。
(二)筆算除法
1、除數(shù)是兩位數(shù)的筆算除法計算方法:從被除數(shù)的高位除起,先用除數(shù)試除被除數(shù)的前兩位,如果前兩位數(shù)比除數(shù)小,就看前三位。除到被除數(shù)的哪一位,商就寫在那一位的上面。每次除后余下的數(shù)必須比除數(shù)小。
2、除數(shù)不是整十數(shù)的兩位數(shù)的除法的試商方法:如果除數(shù)是一個接近整十數(shù)的兩位數(shù),就用“四舍五入”法把除數(shù)看做與它接近的整十數(shù)試商,也可以把除數(shù)看做與它接近的幾十五,再利用一位數(shù)的乘法直接確定商。
3、商一位數(shù):
(1)兩位數(shù)除以整十數(shù),如:62÷30;
(2)三位數(shù)除以整十數(shù),如:364÷70
(3)兩位數(shù)除以兩位數(shù),如:90÷29(把29看做30來試商)
(4)三位數(shù)除以兩位數(shù),如:324÷81(把81看做80來試商)
(5)三位數(shù)除以兩位數(shù),如:104÷26(把26看做25來試商)
(6)同頭無除商八、九,如:404÷42(被除數(shù)的位和除數(shù)的位一樣,即“同頭”,被除數(shù)的前兩位除以除數(shù)不夠除,即“無除”,不是商8就是商9。)
(7)除數(shù)折半商四五,如:252÷48(除數(shù)48的一半24,和被除數(shù)的前兩位25很接近,不是商4就是商5。)
4、商兩位數(shù):(三位數(shù)除以兩位數(shù))
(1)前兩位有余數(shù),如:576÷18
(2)前兩位沒有余數(shù),如:930÷31
5、判斷商的位數(shù)的方法:
被除數(shù)的前兩位除以除數(shù)不夠除,商是一位數(shù);被除數(shù)的前兩位除以除數(shù)夠除,商是兩位數(shù)。
(三)商的變化規(guī)律
1、商變化:
(1)被除數(shù)不變,除數(shù)乘(或除以)幾(0除外),商就除以(或乘)相同的數(shù)。
(2)除數(shù)不變,被除數(shù)乘(或除以)幾(0除外)商也乘(或除以)相同的數(shù)。
2、商不變:被除數(shù)和除數(shù)同時乘(或除以)相同的數(shù)(0除外),商不變。
(四)簡便計算:同時去掉同樣多的0,如9100÷700=91÷7=13
人教版小學數(shù)學知識點總結篇四
(1)在具體場景中理解上、下的含義及其相對性。
(2)能比較準確地確定物體上下的方位,會用上、下描述物體的相對位置。
(3)培養(yǎng)學生初步的空間觀念。
(1)在具體場景中理解前、后、最×的含義,以及前后的相對性。
(2)能比較準確地確定物體前后的方位,會用前、后、最前、最后描述物體的相對位置。
(3)培養(yǎng)學生初步的空間觀念。
(一)本單元知識網(wǎng)絡:
(二)各課知識點:
有幾枝鉛筆(加法的認識)
1、初步了解加法的含義,會讀、寫加法算式,感悟把兩個數(shù)合并在一起求一共是多少,用加法計算;
2、初步嘗試選擇恰當?shù)姆椒ㄟM行5以內(nèi)的加法口算。
3、第一次出現(xiàn)了圖形應用題,要讓學生學會看圖形應用型題目,理解題目的意思。
有幾輛車(初步認識加法的交換律)
3、左、右(1)在具體場景中理解左、右的含義及其相對性。
(2)能比較準確地確定物體左右的方位,會用左、右描述物體的位置。
(3)培養(yǎng)學生初步的空間觀念。
4、位置
(1)明確“橫為行、豎為列”,并知道“第幾行第幾個”、“第幾組第幾個”的含義。
(2)在具體情境中,會用2個數(shù)據(jù)(2個維度)描述人或物體的具體位置。
(3)在具體情境中,能依據(jù)2個維度的數(shù)據(jù)找到人或物體的具體位置。
人教版小學數(shù)學知識點總結篇五
通過欣賞和設計圖案的活動,進一步認識正方形、長方形、三角形和圓。
小小運動會
1、應用100以內(nèi)的進位加法與退位減法的計算方法進行正確的計算。
2、經(jīng)歷與他人交流各自算法的過程,體會算法多樣化。
3、體會長方形、正方形、三角形和圓在生活中的普遍存在。
4、能利用圖形設計美麗的圖案。
人教版小學數(shù)學知識點總結篇六
時分秒
1、鐘面上有3根針,它們是(時針)、(分針)、(秒針),其中走得最快的是(秒針),走得最慢的是(時針)。
2、鐘面上有(12)個數(shù)字,(12)個大格,(60)個小格;每兩個數(shù)間是(1)個大格,也就是(5)個小格。
3、時針走1大格是(1)小時;分針走1大格是(5)分鐘,走1小格是( 1)分鐘;秒針走1大格是(5)秒鐘,走1小格是(1)秒鐘。
4、時針走1大格,分針正好走(1)圈,分針走1圈是(60)分,也就是(1)小時。時針走1圈,分針要走(12)圈。
5、分針走1小格,秒針正好走(1)圈,秒針走1圈是(60)秒,也就是(1)分鐘。
6、時針從一個數(shù)走到下一個數(shù)是(1小時)。分針從一個數(shù)走到下一個數(shù)是(5分鐘)。秒針從一個數(shù)走到下一個數(shù)是(5秒鐘)。
7、鐘面上時針和分針正好成直角的時間有:(3點整)、(9點整)。
8、公式。(每兩個相鄰的時間單位之間的進率是60)
1時=60分1分=60秒
半時=30分60分=1時
60秒=1分30分=半時
萬以內(nèi)的加法和減法
1、認識整千數(shù)(記憶:10個一千是一萬)
2、讀數(shù)和寫數(shù)(讀數(shù)時寫漢字寫數(shù)時寫阿拉伯數(shù)字)
①一個數(shù)的末尾不管有一個0或幾個0,這個0都不讀。
②一個數(shù)的中間有一個0或連續(xù)的兩個0,都只讀一個0。
3、數(shù)的大小比較:
①位數(shù)不同的數(shù)比較大小,位數(shù)多的數(shù)大。
②位數(shù)相同的數(shù)比較大小,先比較這兩個數(shù)的最高位上的數(shù),如果最高位上的數(shù)相同,就比較下一位,以此類推。
4、求一個數(shù)的近似數(shù):
記憶:看最位的后面一位,如果是0-4則用四舍法,如果是5-9就用五入法。
最大的三位數(shù)是位999,最小的三位數(shù)是100,最大的四位數(shù)是9999,最小的四位數(shù)是1000。最大的三位數(shù)比最小的四位數(shù)小1。
5、被減數(shù)是三位數(shù)的連續(xù)退位減法的運算步驟:
①列豎式時相同數(shù)位一定要對齊;
②減法時,哪一位上的數(shù)不夠減,從前一位退1;如果前一位是0,則再從前一位退1。
6、在做題時,我們要注意中間的0,因為是連續(xù)退位的,所以從百位退1到十位當10后,還要從十位退1當10,借給個位,那么十位只剩下9,而不是10。(兩個三位數(shù)相加的和:可能是三位數(shù),也有可能是四位數(shù)。)
7、公式
和=加數(shù)+另一個加數(shù)
加數(shù)=和-另一個加數(shù)
減數(shù)=被減數(shù)-差
被減數(shù)=減數(shù)+差
差=被減數(shù)-減數(shù)
測量
1、在生活中,量比較短的物品,可以用(毫米、厘米、分米)做單位;量比較長的物體,常用(米)做單位;測量比較長的路程一般用(千米)做單位,千米也叫(公里)。
2、1厘米的長度里有(10)小格,每小格的長度(相等),都是(1)毫米。
3、1枚1分的硬幣、尺子、磁卡、小紐扣、鑰匙的厚度大約是1毫米。
4、在計算長度時,只有相同的長度單位才能相加減。
小技巧:換算長度單位時,把大單位換成小單位就在數(shù)字的末尾添加0(關系式中有幾個0,就添幾個0);把小單位換成大單位就在數(shù)字的末尾去掉0(關系式中有幾個0,就去掉幾個0)。
5、長度單位的關系式有:(每兩個相鄰的長度單位之間的進率是10 )
①進率是10:
1米=10分米, 1分米=10厘米,
1厘米=10毫米, 10分米=1米,
10厘米=1分米, 10毫米=1厘米,
②進率是100:
1米=100厘米, 1分米=100毫米,
100厘米=1米, 100毫米=1分米
③進率是1000:
1千米=1000米, 1公里==1000米,
1000米=1千米, 1000米=1公里
6、當我們表示物體有多重時,通常要用到(質(zhì)量單位)。在生活中,稱比較輕的物品的質(zhì)量,可以用(克)做單位;稱一般物品的質(zhì)量,常用(千克)做單位;計量較重的或大宗物品的質(zhì)量,通常用(噸)做單位。
小技巧:在“噸”與“千克”的換算中,把噸換算成千克,是在數(shù)字的.末尾加上3個0;
把千克換算成噸,是在數(shù)字的末尾去掉3個0。
7、相鄰兩個質(zhì)量單位進率是1000。
1噸=1000千克1千克=1000克
1000千克= 1噸1000克=1千克
倍的認識
1、求一個數(shù)是另一個數(shù)的幾倍用除法:一個數(shù)÷另一個數(shù)=倍數(shù)
2、求一個數(shù)的幾倍是多少用乘法:這個數(shù)×倍數(shù)=這個數(shù)的幾倍
多位數(shù)乘一位數(shù)
1、估算。(先求出多位數(shù)的近似數(shù),再進行計算。如497×7≈3500)
2、① 0和任何數(shù)相乘都得0;② 1和任何不是0的數(shù)相乘還得原來的數(shù)。
3、因數(shù)末尾有幾個0,就在積的末尾添上幾個0。
4、三位數(shù)乘一位數(shù):積有可能是三位數(shù),也有可能是四位數(shù)。
公式:速度×時間=路程
每節(jié)車廂的人數(shù)×車廂的數(shù)量=全車的人數(shù)
5、(關于“大約)應用題:
①條件中出現(xiàn)“大約”,而問題中沒有“大約”,求準確數(shù)。→(=)
②條件中沒有,而問題中出現(xiàn)“大約”。求近似數(shù),用估算。→(≈)
③條件和問題中都有“大約”,求近似數(shù),用估算。→(≈)
四邊形
1、有4條直的邊和4個角封閉圖形我們叫它四邊形。
2、四邊形的特點:有四條直的邊,有四個角。
3、長方形的特點:長方形有兩條長,兩條寬,四個直角,對邊相等。
4、正方形的特點:有4個直角,4條邊相等。
5、長方形和正方形是特殊的平行四邊形。
6、平行四邊形的特點:
①對邊相等、對角相等。
②平行四邊形容易變形。(三角形不容易變形)
7、封閉圖形一周的長度,就是它的周長。
8、公式。
正方形的周長=邊長×4
正方形的邊長=周長÷4,
長方形的周長=(長+寬)×2
長方形的長=周長÷2-寬,
長方形的寬=周長÷2-長
分數(shù)的初步認識
1、把一個物體或一個圖形平均分成幾份,取其中的幾份,就是這個物體或圖形的幾分之幾。
2、把一個整體平均分得的份數(shù)越多,它的每一份所表示的數(shù)就越小。
3、①分子相同,分母小的分數(shù)反而大,分母大的分數(shù)反而小。
②分母相同,分子大的分數(shù)就大,分子小的分數(shù)就小。
4、①相同分母的分數(shù)相加、減:分母不變,只和分子相加、減。
② 1與分數(shù)相減:1可以看作是與減數(shù)分母相同的,同分子分母的分數(shù)。
人教版小學數(shù)學知識點總結篇七
1、用豎式計算兩位數(shù)加法時:①相同數(shù)位對齊,加號寫在高位下行之前。
②用尺子畫橫線。
③從個位加起
④如果個位滿10,向十位進1,寫在個位、十位之間,
不進位不寫1
用豎式計算兩位數(shù)減法時:①相同數(shù)位對齊,減號寫在高位下行之前。
②用尺子畫橫線。
③從個位減起
④如果個位不夠減,從十位退1,到個位作10再減(借一要在頭上寫點),計算時十位要記得減去退掉的1。不借位不寫點
⑤得數(shù)寫在橫式上
2、估算:把一個接近整十整百的數(shù)看作整十整百來計算。
方法:個位小于5的少看,個位等于或大于5的多看,看成最為接近的整十或整百數(shù)。“四舍五入”
如:49+42≈9028+45+24≈10098—17≈80
50 4030 50 20100 20更深一步的估計是能夠估出比80大
注:當問題里出現(xiàn)“大約”兩個字時,就需要估算。
3、求“一個已知數(shù)”比“另一個已知數(shù)”多多少、少多少?用減法計算,用“比”字兩邊的較大數(shù)減去較小數(shù)。
4、多幾、少幾已知的問題。比誰少幾,就用誰減去幾;未知數(shù)比誰多幾,就用誰加上幾。
方法:①根據(jù)已知,判斷出與要求的未知,誰多誰少②求多的用加法,求少的用減法
一、意思不同
基數(shù)是集合論中刻畫任意集合大小的一個概念。兩個能夠建立元素間一一對應的集合稱為互相對等集合。例如3個人的集合和3匹馬的集合可以建立一一對應,是兩個對等的集合。序數(shù)是在基數(shù)的基礎上再增加一層意思。
二、用處不同
基數(shù)可以比較大小,可以進行運算。
例如:
設|a|=a,|b|=β,定義a+β=|{(a,0):a∈a}∪{(b,1):b∈b}|。另,a與β的積規(guī)定為|axb|,a×b為a與b的笛卡兒積。
序數(shù),漢語表示序數(shù)的方法較多。通常是在整數(shù)前加“第”,如:第一,第二。也有單用基數(shù)的。如:五行:一曰水,二曰火,三曰木,四曰金,五曰土。
三、寫法
基數(shù):1、2、3
序數(shù):第1、第2、第3
1、分數(shù)乘法:分數(shù)乘法的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)和的簡便運算。
2、分數(shù)乘法的計算法則:分數(shù)乘整數(shù),用分數(shù)的分子和整數(shù)相乘的積作分子,分母不變;分數(shù)乘分數(shù),用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零。
3、分數(shù)乘法意義分數(shù)乘整數(shù)的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)的和的簡便運算。一個數(shù)與分數(shù)相乘,可以看作是求這個數(shù)的幾分之幾是多少。
4、分數(shù)乘整數(shù):數(shù)形結合、轉化化歸
5、倒數(shù):乘積是1的兩個數(shù)叫做互為倒數(shù)。
人教版小學數(shù)學知識點總結篇八
(一)分數(shù)乘法意義:
1、分數(shù)乘整數(shù)的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)的和的簡便運算。
“分數(shù)乘整數(shù)”指的是第二個因數(shù)必須是整數(shù),不能是分數(shù)。
2、一個數(shù)乘分數(shù)的意義就是求一個數(shù)的幾分之幾是多少。
“一個數(shù)乘分數(shù)”指的是第二個因數(shù)必須是分數(shù),不能是整數(shù)。(第一個因數(shù)是什么都可以)
(二)分數(shù)乘法計算法則:
1、分數(shù)乘整數(shù)的計算方法:用分子乘整數(shù)的積作分子,分母不變。能約分的可以先約分,再計算。
(1)為了計算簡便能約分的可先約分再計算。(整數(shù)和分母約分)
(2)約分是用整數(shù)和下面的分母約掉公因數(shù)。(整數(shù)千萬不能與分母相乘,計算結果必須是最簡分數(shù))。
2、分數(shù)乘分數(shù)的計算方法是:用分子相乘的積做分子,用分母相乘的積作分母。(分子乘分子,分母乘分母)
(1)如果分數(shù)乘法算式中含有帶分數(shù),要先把帶分數(shù)化成假分數(shù)再計算。
(2)分數(shù)化簡的方法是:分子、分母同時除以它們的公因數(shù)。
(3)在乘的過程中約分,是把分子、分母中,兩個可以約分的數(shù)先劃去,再分別在它們的上、下方寫出約分后的數(shù)。(約分后分子和分母必須不再含有公因數(shù),這樣計算后的結果才是最簡單分數(shù))。
(4)分數(shù)的基本性質(zhì):分子、分母同時乘或者除以一個相同的數(shù)(0除外),分數(shù)的大小不變。
(三)積與因數(shù)的關系:
一個數(shù)(0除外)乘大于1的數(shù),積大于這個數(shù)。a×b=c,當b>1時,c>a。
一個數(shù)(0除外)乘小于1的數(shù),積小于這個數(shù)。a×b=c,當b<1時,c
一個數(shù)(0除外)乘等于1的數(shù),積等于這個數(shù)。a×b=c,當b=1時,c=a。
在進行因數(shù)與積的大小比較時,要注意因數(shù)為0時的特殊情況。
(四)分數(shù)混合運算
1、分數(shù)混合運算的運算順序與整數(shù)混合運算的運算順序相同,先算乘法,后算加減法,有括號的先算括號里面的,再算括號外面的。
2、整數(shù)乘法運算定律對分數(shù)乘法同樣適用;運算定律可以使一些計算簡便。
乘法交換律:a×b=b×a乘法結合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)分數(shù)乘法應用題——用分數(shù)乘法解決問題
1、求一個數(shù)的幾分之幾是多少?(用乘法)
已知單位“1”的量,求單位“1”的量的幾分之幾是多少,用單位“1”的量與分數(shù)相乘。
2、巧找單位“1”的量:在含有分數(shù)(分率)的語句中,分率前面的量就是單位“1”對應的量,或者“占”“是”“比”字后面的量是單位“1”。
3、求比一個數(shù)多(或少)幾分之幾的數(shù)是多少的解題方法
(1)單位“1”的量+(-)單位“1”的量×這個數(shù)量比單位“1”的量多(或少)的幾分之幾=這個數(shù)量;
(2)單位“1”的量×[1+這個數(shù)量比單位“1”的量多(或少)的幾分之幾]=這個數(shù)量。
人教版小學數(shù)學知識點總結篇九
加法交換律 a+b=b+a
結合律 (a+b)+c=a+(b+c)
減法性質(zhì) a-b-c=a-(b+c)
a-(b-c)=a-b+c
乘法交換律 a×b=b×a
結合律 (a×b)×c=a×(b×c)
分配律 (a+b)×c=a×c+b×c
除法性質(zhì) a÷(b×c)=a÷b÷c
a÷(b÷c)=a÷b×c
(a+b)÷c=a÷c+b÷c
(a-b)÷c=a÷c-b÷c
商不變性質(zhì)m≠0 a÷b=(a×m)÷(b×m) =(a÷m)÷(b÷m)
■積的變化規(guī)律:在乘法中,一個因數(shù)不變,另一個因數(shù)擴大(或縮小)若干倍,積也擴大(或縮小)相同的倍數(shù).
推廣:一個因數(shù)擴大a倍,另一個因數(shù)擴大b倍,積擴大ab倍.
一個因數(shù)縮小a倍,另一個因數(shù)縮小b倍,積縮小ab倍.
■商不變規(guī)律:在除法中,被除數(shù)和除數(shù)同時擴大(或縮小)相同的倍數(shù),商不變.
推廣:被除數(shù)擴大(或縮小)a倍,除數(shù)不變,商也擴大(或縮小)a倍.
被除數(shù)不變,除數(shù)擴大(或縮小)a倍,商反而縮小(或擴大)a倍.
■利用積的變化規(guī)律和商不變規(guī)律性質(zhì)可以使一些計算簡便.但在有余數(shù)的除法中要注意余數(shù).
如:8500÷200= 可以把被除數(shù)、除數(shù)同時縮小100倍來除,即85÷2= ,商不變,但此時的余數(shù)1是被縮小100被后的,所以還原成原來的余數(shù)應該是100.
人教版小學數(shù)學知識點總結篇十
■用字母表示數(shù)
用字母表示數(shù)是代數(shù)的基本特點.既簡單明了,又能表達數(shù)量關系的一般規(guī)律.
■用字母表示數(shù)的注意事項
1、數(shù)字與字母、字母和字母相乘時,乘號可以簡寫成““或省略不寫.數(shù)與數(shù)相乘,乘號不能省略.
2、當1和任何字母相乘時,“ 1” 省略不寫.
3、數(shù)字和字母相乘時,將數(shù)字寫在字母前面.
■含有字母的式子及求值
求含有字母的式子的值或利用公式求值,應注意書寫格式
■等式與方程
表示相等關系的式子叫等式.
含有未知數(shù)的等式叫方程.
判斷一個式子是不是方程應具備兩個條件:一是含有未知數(shù);二是等式.所以,方程一定是等式,但等式不一定是方程.
■方程的解和解方程
使方程左右兩邊相等的未知數(shù)的值,叫方程的解.
求方程的解的過程叫解方程.
■在列方程解文字題時,如果題中要求的未知數(shù)已經(jīng)用字母表示,解答時就不需要寫設,否則首先演將所求的未知數(shù)設為x.
■解方程的方法
1、直接運用四則運算中各部分之間的關系去解.如x-8=12
加數(shù)+加數(shù)=和 一個加數(shù)=和-另一個加數(shù)
被減數(shù)-減數(shù)=差 減數(shù)=被減數(shù)-差 被減數(shù)=差+減數(shù)
被乘數(shù)×乘數(shù)=積 一個因數(shù)=積÷另一個因數(shù)
被除數(shù)÷除數(shù)=商 除數(shù)=被除數(shù)÷商 被除數(shù)=除數(shù)×商
2、先把含有未知數(shù)x的項看作一個數(shù),然后再解.如3x+20=41
先把3x看作一個數(shù),然后再解.
3、按四則運算順序先計算,使方程變形,然后再解.如2.5×4-x=4.2,
要先求出2.5×4的積,使方程變形為10-x=4.2,然后再解.
4、利用運算定律或性質(zhì),使方程變形,然后再解.如:2.2x+7.8x=20
先利用運算定律或性質(zhì)使方程變形為(2.2+7.8)x=20,然后計算括號里面使方程變形為10x=20,最后再解.
人教版小學數(shù)學知識點總結篇十一
■比和比例應用題
在工業(yè)生產(chǎn)和日常生活中,常常要把一個數(shù)量按照一定的比例來進行分配,這種分配方法通常叫“按比例分配”.
■解題策略
按比例分配的有關習題,在解答時,要善于找準分配的總量和分配的比,然后把分配的比轉化成分數(shù)或份數(shù)來進行解答
■正、反比例應用題的解題策略
1、審題,找出題中相關聯(lián)的兩個量
2、分析,判斷題中相關聯(lián)的兩個量是成正比例關系還是成反比例關系.
3、設未知數(shù),列比例式
4、解比例式
5、檢驗,寫答語
人教版小學數(shù)學知識點總結篇十二
測量
1、在生活中,量比較短的物品,可以用(毫米、厘米、分米)做單位;量比較長的物體,常用(米)做單位;測量比較長的路程一般用(千米)做單位,千米也叫(公里)。
2、1厘米的長度里有(10)小格,每小格的長度(相等),都是(1)毫米。
3、1枚1分的硬幣、尺子、磁卡、小紐扣、鑰匙的厚度大約是1毫米。
4、在計算長度時,只有相同的長度單位才能相加減。
小技巧:換算長度單位時,把大單位換成小單位就在數(shù)字的末尾添加0(關系式中有幾個0,就添幾個0);把小單位換成大單位就在數(shù)字的末尾去掉0(關系式中有幾個0,就去掉幾個0)。
5、長度單位的關系式有:(每兩個相鄰的長度單位之間的進率是10)
①進率是10:1米=10分米,1分米=10厘米,1厘米=10毫米,
10分米=1米,10厘米=1分米,10毫米=1厘米,
②進率是100:1米=100厘米,1分米=100毫米,100厘米=1米,100毫米=1分米
③進率是1000:1千米=1000米,1公里==1000米,1000米=1千米,1000米=1公里
6、當我們表示物體有多重時,通常要用到(質(zhì)量單位)。在生活中,稱比較輕的物品的質(zhì)量,可以用(克)做單位;稱一般物品的質(zhì)量,常用(千克)做單位;計量較重的或大宗物品的質(zhì)量,通常用(噸)做單位。
小技巧:在“噸”與“千克”的換算中,把噸換算成千克,是在數(shù)字的末尾加上3個0;
把千克換算成噸,是在數(shù)字的末尾去掉3個0。
7、相鄰兩個質(zhì)量單位進率是1000。
1噸=1000千克1千克=1000克1000千克=1噸1000克=1千克
萬以內(nèi)的加法和減法
1、認識整千數(shù)(記憶:10個一千是一萬)
2、讀數(shù)和寫數(shù)(讀數(shù)時寫漢字寫數(shù)時寫阿拉伯數(shù)字)
①一個數(shù)的末尾不管有一個0或幾個0,這個0都不讀。
②一個數(shù)的中間有一個0或連續(xù)的兩個0,都只讀一個0。
3、數(shù)的大小比較:
①位數(shù)不同的數(shù)比較大小,位數(shù)多的數(shù)大。
②位數(shù)相同的數(shù)比較大小,先比較這兩個數(shù)的位上的數(shù),如果位上的數(shù)相同,就比較下一位,以此類推。
4、求一個數(shù)的近似數(shù):
記憶:看最位的后面一位,如果是0—4則用四舍法,如果是5—9就用五入法。
的三位數(shù)是位999,最小的三位數(shù)是100,的四位數(shù)是9999,最小的四位數(shù)是1000。
的三位數(shù)比最小的四位數(shù)小1。
5、被減數(shù)是三位數(shù)的連續(xù)退位減法的運算步驟:
①列豎式時相同數(shù)位一定要對齊;
②減法時,哪一位上的數(shù)不夠減,從前一位退1;如果前一位是0,則再從前一位退1。
6、在做題時,我們要注意中間的0,因為是連續(xù)退位的,所以從百位退1到十位當10后,還要從十位退1當10,借給個位,那么十位只剩下9,而不是10。(兩個三位數(shù)相加的和:可能是三位數(shù),也有可能是四位數(shù)。)
7、公式被減數(shù)=減數(shù)+差
和=加數(shù)+另一個加數(shù)
減數(shù)=被減數(shù)—差
加數(shù)=和—另一個加數(shù)
差=被減數(shù)—減數(shù)
/在數(shù)學中是“除”的意思。例如:4/5我們可以說4除以5或者四分之五。數(shù)學符號的發(fā)明及使用比數(shù)字要晚,但其數(shù)量卻超過了數(shù)字。現(xiàn)代數(shù)學常用的數(shù)學符號已超過了200個,其中,每一個符號都有一段有趣的經(jīng)歷。
平方根:①如果一個正數(shù)x的平方等于a,那么這個正數(shù)x就叫做a的算術平方根。②如果一個數(shù)x的平方等于a,那么這個數(shù)x就叫做a的平方根。③一個正數(shù)有2個平方根/0的平方根為0/負數(shù)沒有平方根。④求一個數(shù)a的平方根運算,叫做開平方,其中a叫做被開方數(shù)。
立方根:①如果一個數(shù)x的立方等于a,那么這個數(shù)x就叫做a的立方根。②正數(shù)的立方根是正數(shù)、0的立方根是0、負數(shù)的立方根是負數(shù)。③求一個數(shù)a的立方根的運算叫開立方,其中a叫做被開方數(shù)。
實數(shù):①實數(shù)分有理數(shù)和無理數(shù)。②在實數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。③每一個實數(shù)都可以在數(shù)軸上的一個點來表示。
人教版小學數(shù)學知識點總結篇十三
1.學會用“正”字記錄數(shù)據(jù)。
2.會數(shù)“正”,知道一個“正”字代表數(shù)量5。
3.根據(jù)統(tǒng)計表,會解決問題。
4.數(shù)據(jù)收集---整理---分析表格。
1.平均分的含義:把一些物品分成幾份,每份分得同樣的多,叫做平均分。
除法就是用來解決平均分問題的。
2.平均分里有兩種情況:
(1)把一些東西平均分成幾份,求每份是多少;用除法計算,
總數(shù)÷份數(shù)=每份數(shù)
例:24本練習本,平均分給6人,每人分多少本?
列式:24÷6=4
(2)包含除(求一個數(shù)里面有幾個幾)把一個數(shù)量按每份是多少分成一份,求能平均分成幾份;用除法計算,總數(shù)÷每份數(shù)=份數(shù)
例:24本練習本,每人4本,能分給多少人?
列式:24÷4=6
3、除法算式的含義:只要是平均分的過程,就可以用除法算式表示。
除法算式的讀法:從左到右的順序讀,“÷”讀作除以,“=”讀作等于,其他數(shù)字不變。
例如:12÷4=3讀作(12除以4等于3)
例:42÷7=6 42是(被除數(shù)),7是(除數(shù)),6是(商;這個算式讀作(42除以7等于6 )。
4、除法算式各部分名稱:在除法算式中,除號前面的數(shù)就被除數(shù),除號后面的數(shù)叫除數(shù),所得的數(shù)叫商。
被除數(shù)÷除數(shù)=商。變式:被除數(shù)÷商=除數(shù)(如何求被除數(shù),想:除數(shù)×商=被除數(shù)。)
5.用2~6的乘法口訣求商
1、求商的方法:
(1)用平均分的方法求商。
(2)用乘法算式求商。
(3)用乘法口訣求商。
2、用乘法口訣求商時,想除數(shù)和幾相乘的被除數(shù)。
一句口訣可以寫四個算式。(乘數(shù)相同的除外)。
例:用“三八二十四”這句口訣
a、24÷3=8 b、3×8=24
c、24÷3=8 d、24÷8=3
計算方法:12÷4=( )時,想:( )四十二,所以商是( ).
6.解決問題
1、解決有關平均分問題的方法:
總數(shù)÷每份數(shù)=份數(shù)、總數(shù)÷份數(shù)=每份數(shù)、
因數(shù)×因數(shù)=積、一個因數(shù)=積÷另一個因數(shù)
2、用乘法和除法兩步計算解決實際問題的方法:
(1)所求問題要求求出總數(shù),用乘法計算;
(2)所求問題要求求出份數(shù)或每份數(shù),用除法計算。
(3)8個果凍,每2個一份,能分成幾份?求8里有幾個2,用除法計算。
(4)24里面有( )個4,,20里面有( )個5。(用除法計算。)
(5)最小公倍數(shù)問題:一堆水果,3個人正好分完,4個人也正好分完,問這堆水果最少有幾個?
1、軸對稱圖形:沿一條直線對折,兩邊完全重合。對折后能夠完全重合的圖形是軸對稱圖形,折痕所在的直線叫對稱軸。
成軸對稱圖形的漢字:
一,二,三,四,六,八,十,大,干,豐,土,士,中,田,由,甲,申,口,日,曰,木,目,森,谷,林,畫,傘,王,人,非,菲,天,典,奠,旱,春,畝,目,山,單,殺,美,春,品,工,天,網(wǎng),回,喜,莫,罪,夫,黑,里,亞。
2、平移:當物體水平方向或豎直方向運動,并且物體的方向不發(fā)生改變,這種運動是平移。只有形狀、大小、方向完全相同的圖形通過平移才能互相重合。
(記住:平移只能上下移動或左右移動)
3、旋轉:體繞著某一點或軸進行圓周運動的現(xiàn)象就是旋轉。(例如:旋轉木馬、轉動的風扇、轉動的車輪等)
(一)填空
1、汽車在筆直的公路上行駛,車身的運動是( )現(xiàn)象
2、教室門的打開和關閉,門的運動是( )現(xiàn)象。
a.平移 b旋轉 c平移和旋轉
3、下面( )的運動是平移。
a、旋轉的呼啦圈 b、電風扇扇葉 c、撥算珠
這單元主要是考口算題。有以下幾種形式:
1、用7、8、9的乘法口訣求商
求商方法:想“除數(shù)×( )=被除數(shù)”,再根據(jù)乘法口訣計算得商。
例.直接口算:28÷4 8÷8
2、解決問題
求一個數(shù)里有幾個幾,和把一個數(shù)平均分成幾份,求每份是多少,都用除法計算。
例.填空:45÷9=5表示把( )平均分成( )份,每份是( );還表示( )里有( )個( );
一、混合計算
混合運算,先乘除,后加減,有括號的要先算括號里面的。
只有加、減法或只有乘、除法,都要從左到右按順序計算。
二、解決兩步計算的實際問題
1、想好先解決什么問題,再解決什么問題。
2、可以畫圖幫助分析。
3、可以分布計算,也可以列綜合算式。
請畫出先算哪一步,再算哪一步(并標上1和2)
1、同級運算的類型:
例: 23+6+18 32+11-8 53-24+38 2× 8÷4 72÷ 8×4
2、不同級運算的類型:
例:5× 6 +14 3× 7-16 3 + 5 ×9 45- 9×3 45÷9+14 64÷ 8-8
3、帶小括號運算的類型:方法:算式里有括號的,要先算括號里面的。
例: 6×(7 + 2) (24-18)×9 ( 14+35 )÷7 (82-18 )÷8
4.把兩個算式合并成一個綜合算式。(重點)。
弄清楚哪個數(shù)是前一步算式的結果,就用前一步算式替換掉那個數(shù),其他的照寫。當需要替換的是第二個數(shù),必要時還需要加上小括號。
例:15+9=24 24÷3=8 (強調(diào)括號不能忘)_____________________________
5.解決需要兩步計算解決的問題。(要想好先算出什么,在解答什么)
例:媽媽買回3捆鉛筆,每捆8支,送給妹妹12支后,還剩多少支?
先算____________________再算____________________
例:學校買來80本科技書,分給六年級35本,剩下的分給其它5個年級,平均每個年級分到多少本?
6.練習十三 第4題 (重點)
1.我們一共要烤90個面包,每次能烤9個,已經(jīng)烤了36個,剩下的還要烤幾次?
2.我們家原來有25只兔子,又買了15只,一共有8個籠子,平均每個籠子放幾只?
3.小明有4套明信卡,每套8張,他把其中的5張送給了好朋友,還剩下幾張?
4.工人叔叔要挖總長60米的水溝,已經(jīng)挖好了15米,剩下的要用5天挖完,平均每天挖多少米?
有余數(shù)的除法
1、有余數(shù)的除法的意義:在平均分一些物體時,有時會有剩余。
2、余數(shù)與除數(shù)的關系:在有余數(shù)的除法中,余數(shù)必須比除數(shù)小。
最大的余數(shù)小于除數(shù)1,最小的余數(shù)是1。
3、筆算除法的計算方法:
(1)先寫除號“廠”
(2)被除數(shù)寫在除號里,除數(shù)寫在除號的左側。
(3)試商,商寫在被除數(shù)上面,并要對著被除數(shù)的個位。
(4)把商與除數(shù)的乘積寫在被除數(shù)的下面,相同數(shù)位要對齊。
(5)用被除數(shù)減去商與除數(shù)的乘積,如果沒有剩余,就表示能除盡。
4、有余數(shù)的除法的計算方法可以分四步進行:一商,二乘,三減,四比。
(1)商:即試商,想除數(shù)和幾相乘最接近被除數(shù)且小于被除數(shù),那么商就是幾,寫在被除數(shù)的個位的上面。
(2)乘:把除數(shù)和商相乘,將得數(shù)寫在被除數(shù)下面。
(3)減:用被除數(shù)減去商與除數(shù)的乘積,所得的差寫在橫線的下面。
(4)比:將余數(shù)與除數(shù)比一比,余數(shù)必須必除數(shù)小。
5、解決問題
根據(jù)除法的意義,解決簡單的有余數(shù)的除法的問題,要根據(jù)實際情況,靈活處理余數(shù)。
(1)余數(shù)比除數(shù)小。
例:43÷7=()…( )余數(shù)可能是( )或者余數(shù)最大是( )
(2)至少問題(進一法):商+1
例:有27箱菠蘿,王叔叔每次最多能運8箱。至少要運多少次才能運完這些菠蘿。
(3)最多問題(去尾法)
例:小麗有10元錢,買3元一個的面包,最多能買幾個?
課例:
1. 22個學生去劃船,每條船最多坐4人,他們至少要租多少條船?
22÷4=5(條)……2(人)
答:他們至少要租6條船。
一、1000以內(nèi)數(shù)的認識
1、10個一百就是一千。
2、讀數(shù)時,要從高位讀起。百位上是幾就幾百,十位上幾就幾十,個位上是幾就讀幾中間有一個0,就讀“零”,末尾不管有幾個0,都不讀。【例如:20xx讀作二千零三,2300讀作二千三百】
3、寫數(shù)時,要從高位寫起,幾個百就在百位寫幾,幾個十就在十位寫幾,幾個一就在個位寫幾,哪一位上一個數(shù)也沒有就寫0占位。 【例如:三千五百寫作3500,三千零六十九寫作3069】
4、數(shù)的組成:看每個數(shù)位上是幾,就由幾個這樣的計數(shù)單位組成。例:2369由( )個千、( )個百、( )個十和( )個一組成的。
二、10000以內(nèi)數(shù)的認識
1、10個一千是一萬。
2、萬以內(nèi)數(shù)的讀法和寫法與1000以內(nèi)的數(shù)讀法和寫法相同。
3、最小兩位數(shù)是10,最大的兩位數(shù)是99;最小三位數(shù)是100,最大的三位數(shù)是999;最小四位數(shù)是1000,最大的四位數(shù)是9999;最小的五位數(shù)是10000,最大的五位數(shù)是99999。
三、整百、整千數(shù)加減法
1、整百、整千加減法的計算方法。
(1)把整百、整千數(shù)看成幾個百,幾個千,然后相加減。
(2)先把0前面的數(shù)相加減,再在得數(shù)末尾添上與整百、整千數(shù)相同個數(shù)的0。
2、估算
把數(shù)看做它的近似數(shù)再計算。
四、10000以內(nèi)數(shù)的大小比較的方法:
(1)位數(shù)多的數(shù)就大,例如453 < 1000
(2)如果位數(shù)相同,就比較最高位上的數(shù)字,數(shù)字大的這個數(shù)就大,反之就小;例如 357 < 978
(3)如果最高位上的數(shù)字相同,就比較下一位上的數(shù),依次類推。246 > 219
補充:
1、相鄰兩個計數(shù)單位之間的進率是10。記:一個一個地數(shù),10個一是( )。一十一十地數(shù),10個十是( )。一百一百地數(shù),10個一百是( )。一千一千地數(shù),10個一千是( )。
2.在數(shù)位順序表中,從右邊起,第一位是(個位),第二位是(十位),第三位是(百位),第四位是(千位),第五位是(萬位)。
3、數(shù)的組成:就是看每個數(shù)位上是幾,就有幾個這樣的計數(shù)單位組成。
例:2647=( )+( )+( )+( )
4、用估算策略解決問題。
96頁 例13(估大)
練習19 第8題(估小)
1.(千克)和(克)都是國際上通用的質(zhì)量單位。計量比較重的物品,常用“千克”(kg)作單位。
2、稱較輕的物品的質(zhì)量時,用“克”作單位;稱較重的物品的質(zhì)量時,用“千克”作單位。
3、一個兩分的硬幣約是1克。兩袋500克的鹽約是1千克。
4、1千克=1000克 1kg=1000g.進率是1000.( 1千克=1公斤、1公斤=2斤、1斤=500克、
1斤=10兩、1兩=50克)
5、計算或者比較大小時,如果單位不同,就需要把單位統(tǒng)一。一般統(tǒng)一成單位“克”。
估計物品有多重,要結合物品的大小、質(zhì)地等因素。
人教版小學數(shù)學知識點總結篇十四
(一)、有趣的“0”“一年級0”可以表示沒有,“0”可以參加計算,“0”在數(shù)中起到占位作用,“0”可以表示起點,表示0度。
(二)、基數(shù)與序數(shù)表示物體的多少時,用的是基數(shù);表示物體排列的次序時,用的是序數(shù)。基數(shù)與序數(shù)不同,基數(shù)表示物體的多少,序數(shù)表示物體的排列次序。
(一)、數(shù)簡單圖形數(shù)零亂放置的物體或數(shù)某一類圖形的個數(shù)時,應先將所有物體依次標上序號,可以按照序號,順序觀察,數(shù)準指定的圖形。注意對于同一個物體,從不同的角度去觀察,觀察的結果也會不同。因此在數(shù)簡單圖形時,要善于從不同的角度觀察問題、分析問題。
(二)、數(shù)復雜圖形數(shù)復雜圖形時可以按大小分類來數(shù)。
(三)、數(shù)數(shù)按條件的要求去數(shù)。
比一比當比較的2個對象整齊的排列時,很容易采用連線比的方法比較出誰多誰少。如果比較的2個對象是雜亂排列的,可以通過數(shù)數(shù)目的方法進行比較。也可以采用分段比的方法。
(一)、擺一擺要善于尋找不同的方法。
(二)、移一移
(一)、圖形變化的規(guī)律觀察圖形的變化,可以從圖形的形狀、位置、方向、數(shù)量、大小、顏色等方面入手,從中尋找規(guī)律。
(二)、數(shù)列的規(guī)律數(shù)列就是按一定規(guī)律排成的一列數(shù)。怎樣尋找已知數(shù)列的規(guī)律,并按規(guī)律填出指定的某個數(shù)是解題的關鍵。
(三)、數(shù)表的規(guī)律把一些數(shù)按照一定的規(guī)律,填在一個圖形固定的位置上,再把按照這一規(guī)律填出的圖形排列起來。從給出的圖形中尋找規(guī)律,按照規(guī)律填圖是解題的關鍵。
(一)、填數(shù)字給出的算式是一組,不同算式中相同圖形中所填的數(shù)字是相同的。在做這些題時,不要為只填出一個答案而滿足,應找出所有的答案。如果不必要一一列出時,應給以說明,這才是完整、正確的解答。
(二)、填符號比較2個數(shù)的大小,首先要比較2個數(shù)的位數(shù),位數(shù)多的數(shù)大;其次,當2個數(shù)的位數(shù)相同時,從高位比起,相同數(shù)位上的數(shù)大的那個數(shù)就大。當2個數(shù)各個相同數(shù)位上的數(shù)都分別相同時,這2個數(shù)相等。
(1)同一個數(shù)分別加上(或減去)1個相等的數(shù),所得的結果相等;
(2)同一個數(shù)分別加上2個不同的數(shù),所加的哪個數(shù)大,那個算式的結果就大;
(3)同一個數(shù)分別減去2個不同的數(shù),所減的哪個數(shù)小,那個算式的結果就大;
(4)2個不同的數(shù)減去同一個數(shù),哪個被減數(shù)大,那個算式的結果就大。七、說道理做數(shù)學題,每一步都要有理由,要把道理想清楚,說出來。
應用題一道簡單的應用題,是由已知條件和所求問題組成的。一般先說題意,再列算式。
人教版小學數(shù)學知識點總結篇十五
1、常用的長度單位:米、厘米。
2、測量較短物體通常用厘米作單位,測量較長物體通常用米作單位。
3、測量物體長度的方法:將物體的左端對準直尺的“0”刻度,看物體的右端對著直尺上的刻度是幾,這個物體的長度就是幾厘米。
4、米和厘米的關系:1米=100厘米100厘米=1米
5、線段
⑴線段的特點:①線段是直的;②線段有兩個端點;③線段有長有短,是可以量出長度的。
⑵畫線段的方法:先用筆對準尺子的’0”刻度,在它的上面點一個點,再對準要畫到的長度的厘米刻度,在它的上面也點一個點,然后把這兩個點連起來,寫出線段的長度。
⑶測量物體的長度時,當不是從“0”刻度量起時,要用終點的刻度數(shù)減去起點的刻度數(shù)。
6、填上合適的長度單位。
小明身高1(米)30(厘米)
練習本寬13(厘米)
鉛筆長17(厘米)
黑板長2(米)圖釘長1(厘米)
一張床長2(米)一口井深3(米)
學校進行100(米)賽跑
教學樓高25(米)寶寶身高80(厘米)
跳繩長2(米)一棵樹高3(米)
一把鑰匙長5(厘米)
一個文具盒長24(厘米)
講臺高90(厘米)
門高2(米)教室長12(米)
筷子長20(厘米)
一棵小樹苗高1(米)
小朋友的頭圍48厘米
爸爸的身高1米75厘米或175厘米
小朋友的身高120厘米或1米20厘米
一、兩位數(shù)加兩位數(shù)
1、兩位數(shù)加兩位數(shù)不進位加法的計算法則:把相同數(shù)位對齊列豎式,在把相同數(shù)位上的數(shù)相加。
2、兩位數(shù)加兩位數(shù)進位加法的計算法則:①相同數(shù)位對齊;②從個位加起;③個位滿十向十位進1。
3、筆算兩位數(shù)加兩位數(shù)時,相同數(shù)位要對齊,從個位加起,個位滿十要向十位進“1”,十位上的數(shù)相加時,不要遺漏進上來的“1”。
4、和=加數(shù)+加數(shù)
一個加數(shù)=和-另一個加數(shù)
二、兩位數(shù)減兩位數(shù)
1、兩位數(shù)減兩位數(shù)不退位減的筆算:相同數(shù)位對齊列豎式,再把相同數(shù)位上的數(shù)相減
2、兩位數(shù)減兩位數(shù)退位減的筆算法則:①相同數(shù)位對齊;②從個位減起;③個位不夠減,從十位退1,在個位上加10再減。
3、筆算兩位數(shù)減兩位數(shù)時,相同數(shù)位要對齊,從個位減起,個位不夠減,從十位退1,個位加10再減,十位計算時要先減去退走的1再算。
4、差=被減數(shù)-減數(shù)
被減數(shù)=減數(shù)+差
減數(shù)=被減數(shù)+差
三、連加、連減和加減混合
1、連加、連減
連加、連減的筆算順序和連加、連減的口算順序一樣,都是從左往右依次計算。
①連加計算可以分步計算,也可以寫成一個豎式計算,計算方法與兩個數(shù)相加一樣,都要把相同數(shù)位對齊,從個位加起。
②連減運算可以分步計算,也可以寫成一個豎式計算,計算方法與兩個數(shù)相減一樣,都要把相同數(shù)位對齊,從個位減起。
2、加減混合
加、減混合算式,其運算順序、豎式寫法都與連加、連減相同。
3、加減混合運算寫豎式時可以分步計算,方法與兩個數(shù)相加(減)一樣,要把相同數(shù)位對齊,從個位算起;也可以用簡便的寫法,列成一個豎式,先完成第一步計算,再用第一步的結果加(減)第二個數(shù)。
四、解決問題(應用題)
1、步驟:①先讀題②列橫式,寫結果,千萬別忘記寫單位(單位為:多少或者幾后面的那個字或詞)③作答。
2、求“一個已知數(shù)”比“另一個已知數(shù)”多多少、少多少?用減法計算。用“比”字兩邊的較大數(shù)減去較小數(shù)。
3、比一個數(shù)多幾、少幾,求這個數(shù)的問題。先通過關鍵句分析,“比”字前面是大數(shù)還是小數(shù),“比”字后面是大數(shù)還是小數(shù),問題里面要求大數(shù)還是小數(shù),求大數(shù)用加法,求小數(shù)用減法。
4、關于提問題的題目,可以這樣提問:
①…….和……一共…….?
②……比……..多多少/幾……?
③……比……..少多少/幾……?
1、角的初步認識
(1)角是由一個頂點和兩條邊組成的;
(2)畫角的方法:從一個點起,用尺子向不同的方向畫兩條直線。
(3)角的大小與邊的長短沒有關系,與角的兩條邊張開的大小有關,角的兩條邊張開得越大,角就越大,角的兩條邊張開得越小,角就越小。
2、直角的初步認識
(1)直角的判斷方法:用三角尺上的直角比一比(頂點對頂點,一邊對一邊,再看另一條邊是否重合)。
(2)畫直角的方法:①先畫一個頂點,再從這個點出發(fā)畫一條直線②用三角尺上的直角頂點對齊這個點,一條直角邊對齊這條線③再從這點出發(fā)沿著三角尺上的另一條直角邊畫一條線④最后標出直角標志。
(3)比直角小的是銳角,比直角大的是鈍角:銳角<直角<鈍角。
(4)所有的直角都一樣大
(5)每個三角尺上都有1個直角,兩個銳角。紅領巾上有3個角,其中一個是鈍角,兩個是銳角。一個長方形中和正方形中都是有4個直角。
人教版小學數(shù)學知識點總結篇十六
1.奇偶性
問題
奇+奇=偶奇×奇=奇
奇+偶=奇奇×偶=偶
偶+偶=偶偶×偶=偶
2.位值原則
形如:abc=100a+10b+c
3.數(shù)的整除特征:
整除數(shù)特征
2末尾是0、2、4、6、8
3各數(shù)位上數(shù)字的和是3的倍數(shù)
5末尾是0或5
9各數(shù)位上數(shù)字的和是9的倍數(shù)
11奇數(shù)位上數(shù)字的和與偶數(shù)位上數(shù)字的和,兩者之差是11的倍數(shù)
4和25末兩位數(shù)是4(或25)的倍數(shù)
8和125末三位數(shù)是8(或125)的倍數(shù)
7、11、13末三位數(shù)與前幾位數(shù)的差是7(或11或13)的倍數(shù)
4.整除性質(zhì)
①如果c|a、c|b,那么c|(ab)。
②如果bc|a,那么b|a,c|a。
③如果b|a,c|a,且(b,c)=1,那么bc|a。
④如果c|b,b|a,那么c|a.
⑤a個連續(xù)自然數(shù)中必恰有一個數(shù)能被a整除。
5.帶余除法
一般地,如果a是整數(shù),b是整數(shù)(b≠0),那么一定有另外兩個整數(shù)q和r,0≤r
當r=0時,我們稱a能被b整除。
當r≠0時,我們稱a不能被b整除,r為a除以b的余數(shù),q為a除以b的不完全商(亦簡稱為商)。用帶余數(shù)除式又可以表示為a÷b=q……r,0≤r
數(shù)列求和:
等差數(shù)列:在一列數(shù)中,任意相鄰兩個數(shù)的差是一定的,這樣的一列數(shù),就叫做等差數(shù)列。
基本概念:首項:等差數(shù)列的第一個數(shù),一般用a1表示;
項數(shù):等差數(shù)列的所有數(shù)的個數(shù),一般用n表示;
公差:數(shù)列中任意相鄰兩個數(shù)的差,一般用d表示;
通項:表示數(shù)列中每一個數(shù)的公式,一般用an表示;
數(shù)列的和:這一數(shù)列全部數(shù)字的和,一般用sn表示。
基本思路:等差數(shù)列中涉及五個量:a1,an,d,n,sn,通項公式中涉及四個量,如果己知其中三個,就可求出第四個;求和公式中涉及四個量,如果己知其中三個,就可以求這第四個。
基本公式:通項公式:an=a1+(n-1)d;
通項=首項+(項數(shù)一1)×公差;
數(shù)列和公式:sn,=(a1+an)×n÷2;
數(shù)列和=(首項+末項)×項數(shù)÷2;
項數(shù)公式:n=(an+a1)÷d+1;
項數(shù)=(末項-首項)÷公差+1;
公差公式:d=(an-a1))÷(n-1);
公差=(末項-首項)÷(項數(shù)-1);
關鍵問題:確定已知量和未知量,確定使用的公式
鳥頭定理即共角定理。
燕尾定理即共邊定理的一種。
共角定理:
若兩三角形有一組對應角相等或互補,則它們的面積比等于對應角兩邊乘積的比。
共邊定理:
有一條公共邊的三角形叫做共邊三角形。
共邊定理:設直線ab與pq交與m則s△pab/s△qab=pm/qm
這幾個定理大都利用了相似圖形的方法,但小學階段沒有學過相似圖形,而小學奧數(shù)中,常常要引入這些,實在有點難為孩子。
為了避開相似,我們用相應的底,高的比來推出三角形面積的比。
例如燕尾定理,一個三角形abc中,d是bc上三等分點,靠近b點。連接ad,e是ad上一點,連接eb和ec,就能得到四個三角形。
很顯然,三角形abd和acd面積之比是1:2
因為共邊,所以兩個對應高之比是1:2
而四個小三角形也會存在類似關系
三角形abe和三角形ace的面積比是1:2
三角形bed和三角形ced的面積比也是1:2
所以三角形abe和三角形ace的面積比等于三角形bed和三角形ced的面積比,這就是傳說中的燕尾定理。
以上是根據(jù)共邊后,高之比等于三角形面積之比證明所得。
必須要強記,只要理解,到時候如何變形,你都能會做。至于鳥頭定理,也不要死記硬背,掌握原理,用起來就會得心應手。
人教版小學數(shù)學知識點總結篇十七
1、已經(jīng)學過的面積單位有平方厘米(cm2)、平方分米(dm2)、平方米(m2)、公頃、平方千米(km2)。
2、(1)邊長是1厘米的正方形,面積是1平方厘米。
(2)邊長是1分米的正方形,面積是1平方分米。
(3)邊長是1米的正方形,面積是1平方米。
(4)邊長是100米的正方形,面積是1公頃。1公頃=10000平方米
測量土地的面積,可以用公頃作單位。
例如:鳥巢的占地面積約1公頃。400跑道圍起來的部分的面積大約是1公頃。
(5)邊長是1000米的正方形,面積是1平方千米。
1平方千米=100公頃=1000000平方米
我國陸地領土面積約為960萬平方千米。
3、面積單位之間的換算:
(1)首先要記住它們之間的進率:
1平方千米=100公頃=1000000平方米
1公頃=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方米=10000平方厘米
(2)換算方法:
○1把高級單位化為低級單位,要用乘法計算,只要用高級單位前面的數(shù)去乘這兩個單位之間的進率。(即高化低,乘進率,小數(shù)點向右移,移幾位,看進率。)
○2把低級單位聚成高低級單位,要用除法計算,只要用低級單位前面的數(shù)去除以這兩個單位之間的進率。(即低化高,除以進率,小數(shù)點向左移,移幾位,看進率。)
a、把公頃轉化為平方米,只要在公頃前面的數(shù)據(jù)后面直接添寫4個0。
b、把平方米轉化為公頃,只要在平方米前面的數(shù)據(jù)后面直接去掉4個0。
c、把平方千米轉化為公頃,只要在平方千米前面的數(shù)據(jù)后面直接添寫2個0。
d、把平方千米轉化為平方米,只要在平方千米前面的數(shù)據(jù)后面直接添寫6個0。
e、把平方米轉化為平方千米,只要在平方米前面的數(shù)據(jù)后面直接去掉6個0。
4、填寫面積單位的規(guī)律:
(1)國土面積、省份(含直轄市)面積、省會城市面積、州(市)面積、縣、鄉(xiāng)鎮(zhèn)面積、村委會、村莊面積、一般要用“平方千米”作單位。
(2)公園、院(校)園、體育場(館)等,一般要用“公頃”作單位。
(3)房屋(建筑)面積、教室面積、校園綠化面積等,一般要用“平方米”作單位。