在日常的學習、工作、生活中,肯定對各類范文都很熟悉吧。那么我們該如何寫一篇較為完美的范文呢?下面是小編幫大家整理的優質范文,僅供參考,大家一起來看看吧。
高考數學解題思路篇一
轉化包括等價轉化和非等價轉化,等價轉化要求在轉化的過程中前因和后果是充分的也是必要的;不等價轉化就只有一種情況,因此結論要注意檢驗、調整和補充。轉化的原則是將不熟悉和難解的問題轉為熟知的、易解的和已經解決的問題,將抽象的問題轉為具體的和直觀的問題;將復雜的轉為簡單的問題;將一般的轉為特殊的問題;將實際的問題轉為數學的問題等等使問題易于解決。
常見的轉化方法
①直接轉化法:把原問題直接轉化為基本定理、基本公式或基本圖形問題;
②換元法:運用“換元”把式子轉化為有理式或使整式降冪等,把較復雜的函數、方程、不等式問題轉化為易于解決的基本問題;
③數形結合法:研究原問題中數量關系(解析式)與空間形式(圖形)關系,通過互相變換獲得轉化途徑;
④等價轉化法:把原問題轉化為一個易于解決的等價命題,達到化歸的目的;
⑤特殊化方法:把原問題的形式向特殊化形式轉化,并證明特殊化后的問題,使結論適合原問題;
⑥構造法:“構造”一個合適的數學模型,把問題變為易于解決的問題;
⑦坐標法:以坐標系為工具,用計算方法解決幾何問題也是轉化方法的一個重要途徑。
高考數學解題思路篇二
高考數學復數常用公式
高考數學解題思路12種
高考數學公式、結論:數列
高考數學答題模板12個
高考數學學霸學習經驗
高考數學七大必考專題
高考數學解題思路篇三
分類討論的思想之所以重要,原因一是因為它的邏輯性較強,原因二是因為它的知識點的涵蓋比較廣,原因三是因為它可培養學生的分析和解決問題的能力。原因四是實際問題中常常需要分類討論各種可能性。
解決分類討論問題的關鍵是化整為零,在局部討論降低難度。
常見的類型
類型1:由數學概念引起的的討論,如實數、有理數、絕對值、點(直線、圓)與圓的位置關系等概念的分類討論;
類型2:由數學運算引起的討論,如不等式兩邊同乘一個正數還是負數的問題;
類型3 :由性質、定理、公式的限制條件引起的討論,如一元二次方程求根公式的應用引起的討論;
類型4:由圖形位置的不確定性引起的討論,如直角、銳角、鈍角三角形中的相關問題引起的討論。
類型5:由某些字母系數對方程的影響造成的分類討論,如二次函數中字母系數對圖象的影響,二次項系數對圖象開口方向的影響,一次項系數對頂點坐標的影響,常數項對截距的影響等。
分類討論思想是對數學對象進行分類尋求解答的一種思想方法,其作用在于克服思維的片面性,全面考慮問題。分類的原則:分類不重不漏。