在日常的學習、工作、生活中,肯定對各類范文都很熟悉吧。相信許多人會覺得范文很難寫?這里我整理了一些優秀的范文,希望對大家有所幫助,下面我們就來了解一下吧。
《一元二次方程解法》教學反思簡短 一元二次方程的解法課后反思篇一
本節共分3課時,第一課時引導學生通過轉化得到解一元二次方程的配方法,第二課時利用配方法解數字系數的一般一元二次方程,第3課時通過實際問題的解決,培養學生數學應用的意識和能力,同時又進一步訓練用配方法解題的技能。
在教學中最關鍵的是讓學生掌握配方,配方的對象是含有未知數的二次三項式,其理論依據是完全平方式,配方的方法是通過添項:加上一次項系數一半的平方構成完全平方式,對學生來說,要理解和掌握它,確實感到困難,因此在教學過程中及課后批改中發現學生出現以下幾個問題:
在利用添項來使等式左邊配成一個完全平方公式時,等式的右邊忘了加。
在開平方這一步驟中,學生要么只有正、沒有負的,要么右邊忘了開方。
當一元二次方程有二次項的系數不為1時,在添項這一步驟時,沒有將系數化為1,就直接加上一次項系數一半的平方。
因此,要糾正以上錯誤,必須讓學生多做練習、上臺表演、當場講評,才能熟練掌握。
通過本節課的教學,使我真正認識到了自己課堂教學的成功與失敗。對我今后課堂教學有了一定引領方向有了很大的幫助。下面我就談談自己對這節課的反思。
本節課的重點主要有以下3點:
1.找出a,b,c的相應的數值
2.驗判別式是否大于等于
3.當判別式的數值符合條件,可以利用公式求根.
在講解過程中,我沒讓學生進行(1)(2)步就直接用公式求根,第一次接觸求根公式,學生可以說非常陌生,由于過高估計學生的能力,結果出現錯誤較多。
1. a,b,c的符號問題出錯,在方程中學生往往在找某個項的系數時總是丟掉前面的符號。
2. 求根公式本身就很難,形式復雜,代入數值后出錯很多。
其實在做題過程中檢驗一下判別式著一步單獨挑出來做并不麻煩,直接用公式求值也要進行,提前做著一步在到求根公式時可以把數值直接代入.在今后的教學中注意詳略得當,不該省的地方一定不能省,力求收到更好的教學效果
3、板書不太理想。板書可以說在課堂教學也起關鍵作用,它可以幫學生溫習本課的內容,而我許多本該板書的內容全部反映在大屏幕上,在繼續講一下個內容時,這些內容也就不會再出現,只給學生瞬間的停留,這樣做也有欠妥當。
4、本節課沒有激情,學習的積極性調動不起來,對學生地鼓勵性的語言過于少,可以說幾乎沒有。
教學時可以讓學生先各自求解,然后進行交流并對學生的方法與課本上對小穎、小明、小亮的方法進行比較與評析,發現分解因式是解某些一元二次方程較為簡便的方法。利用分解因式法解題時。很多同學在解題時易犯的錯誤是進行了非同解變形,結果丟掉一根,對此教學時只能結合具體方程予以說明,另外,本節課學生易忽略一點是“或”與“且”的區別,應做些說明。
對于學有余力的學生可以介紹十字相乘法,它對二次三項式分解因式簡便。
通過以上的反思,我將在以后的教學中對自己存在的優點我會繼續保持,針對不足我將會不斷地改進,使自己的課堂教學逐步走上一個新的臺階。
《一元二次方程解法》教學反思簡短 一元二次方程的解法課后反思篇二
利用求根公式解一元二次方程的一般步驟:
1、找出a,b,c的相應的數值
2、驗判別式是否大于等于0
3、當判別式的數值符合條件,可以利用公式求根、
學生第一次接觸求根公式,學生可以說非常陌生,由于過高估計學生的能力,結果出現錯誤較多、
1、a,b,c的符號問題出錯,在方程中學生往往在找某個項的系數時總是丟掉前面的符號
2、求根公式本身就很難,形式復雜,代入數值后出錯很多、
其實在做題過程中檢驗一下判別式這一步單獨提出來做并不麻煩,直接用公式求值也要進行,提前做這一步在到求根公式時可以把數值直接代入、在今后的教學中注意詳略得當,不該省的地方一定不能省,力求達到更好的教學效果、
通過本節課的教學,總體感覺調動了學生的積極性,能夠充分發揮學生的主體作用,激發了學生思維的火花,具體有以下幾個特點:
本節課第一個例題,我在引導解決此題之后,總結了利用求根公式解一元二次方程的一般步驟,不僅關注結果更關注過程,讓學生養成良好的解題習慣。
例2、3是例1的變式與提高,通過變式訓練,讓學生由淺入深,由易到難,也讓學生解決問題的能力提高,這是這節課中的一大亮點,在講完例題的基礎上,將更多的時間留給學生,這樣學生感覺到成功的機會增加,從而有一種積極的學習態度,同時學生在學習中相互交流,相互學習,共同提高。
課堂上多給學生展示的機會,讓學生走上講臺,向同學們展示自己的聰明才智??傊ㄟ^各種激勵的教學手段,幫助學生形成積極的學習態度,課堂收效大。
需要改進的方面,由于怕完不成任務,教師講的還是多了些,以后應最大限度的發揮學生的主體作用。
《一元二次方程解法》教學反思簡短 一元二次方程的解法課后反思篇三
1.直接開平方法應用簡單,但受形式限制;開平方的時候要注意正負。
2.配方法較麻煩,用公式法更方便,故一般不采用。但配方法是一種較重要的數學方法,公式法就是由它推導出來的,而且在后面的函數中還要用到配方法,所以要掌握好。它的重要性,不僅僅表現在一元二次方程的解法中,在今后學習二次函數,到高中學習二次曲線時還將經常用到。配方的時候,要注意二次項系數應先化為1,再把常數項移到式子的右邊,然后把方程兩邊都加上一次項系數一半的平方;左邊就變成了一個平方的形式,再運用直接開平方的方法求出方程的解。
3.公式法是一元二次方程的基本解法,對所有的一元二次方程都適用;用公式法的時候要先把方程變為一般形式,在求出方程的判別式,最后用公式求出方程的解。
4.因式分解法使用方便,是解一元二次方程最常用的方法,但不是所有的二次三項式都能很方便地進行因式分解。應用時要注意,等號的右邊一定要為0,然后再把方程的左邊進行因式分解,將方程左邊分解成兩個一次因式的乘積的形式,令每個因式分別為零,得到兩個一元一次方程,解每個方程就求出了原方程的解。
1.先觀察能否用直接開平方法,能用就優先采用;
2.再觀察能否用因式分解法;
3.用公式法。
注意:一般不采用配方法。
《一元二次方程解法》教學反思簡短 一元二次方程的解法課后反思篇四
1、找出a,b,c的相應的數值;
2、驗判別式是否大于或等于0;
3、當判別式的數值大于或等于0時,可以利用公式求根,若判別式的數值小于0,就判別此方程無實數解。
在講解過程中,我要求學生先進行1、2步,然后再用公式求根。因為學生第一次接觸求根公式,求根公式本身就很難,學生可以說非常陌生,如果不先進行1、2步,結果很容易出錯。首先,對于一些粗心的同學來說,a,b,c的符號就容易出問題,也就是在找某個項的系數或常數項時總是丟掉前面的符號。其次,一無二次方程的求根公式形式復雜,直接代入數值后求根出錯一定很多。但有少數心急的同學,他們總是嫌麻煩,省掉1、2步,直接用公式求根。
一是學生沒體會這樣做的好處,其實在做題過程中檢驗一下判別式非常必要,同時也簡化了判別式的值,給下面的運算帶來方便。這樣做并不麻煩,而直接用公式求值也要進行這兩步。
二是學生剛學習公式法,例題比較簡單,對于簡單的題,這樣做還可以,但一旦養成習慣,遇到復雜的習題就不好辦了。
三是部分學生老是想圖省事,沒學會走,就想跑,想一口吃個大胖子。
在今后的教學中,還要加強對新知識學習過程中格式和步驟的要求,并且對習慣不好的同學要進行耐心細致的講解,讓他們認識到這樣做的弊端,掌握正確的學習方法,提高正確率。