91夜夜人人揉人人捏人人添-91一区二区三区四区五区-91伊人久久大香线蕉-91在线电影-免费a网址-免费v片网站

當前位置:網站首頁 >> 作文 >> 二次函數教學反思博客(9篇)

二次函數教學反思博客(9篇)

格式:DOC 上傳日期:2023-03-09 18:37:31
二次函數教學反思博客(9篇)
時間:2023-03-09 18:37:31     小編:zdfb

人的記憶力會隨著歲月的流逝而衰退,寫作可以彌補記憶的不足,將曾經的人生經歷和感悟記錄下來,也便于保存一份美好的回憶。寫范文的時候需要注意什么呢?有哪些格式需要注意呢?接下來小編就給大家介紹一下優秀的范文該怎么寫,我們一起來看一看吧。

二次函數教學反思博客篇一

通過本節課教學,得出幾點體會:

1、在教學中二次函數圖像的對稱軸,頂點坐標,開口方向尤其重要,必需特別強調。

2、在探究中要積累研究問題的方法并積累經驗,學生在前面已經歷過探索、分析和建立兩個變量之間的關系的過程,學習了一次函數和反比例函數,學會了用描點法作函數圖象并據此分析得出函數的性質。我們可以把研究這些問題的方法應用于研究二次函數的圖象和性質,并據此形成研究問題的基本方法。

3、要使課堂真正成為學生展示自我的舞臺,還學生課堂學習的主體地位,教師要把激發學生學習熱情和獲得學習能力放在教學首位,為學生提供展示自己聰明才智的機會,使課堂真正成為學生展示自我的舞臺。充分利用合作交流的形式,能使教師發現學生分析問題解決問題的獨到見解以及思維的誤區,以便指導今后的教學。但在復習與練習的過程中,我發現學生存在著這樣幾個問題。

本節課,我合理、充分利用了多媒體教學的手段,利用powerpoint,《幾何畫板》這兩種軟件制作了課件,特別是《幾何畫板》軟件的應用,畫出了標準、動畫形式的二次函數的`圖像,讓抽象思維不強的學生,更加形象的結合圖形,分析說出二次函數的有關性質,充分體現了“數形結合”的數學思想。為了突出重點,攻破難點,我要求學生“先觀察后思考”、“先做后說”、“先討論后總結”,“師生共做”充分體現了教學過程中以學生為主體,老師起主導作用的教學原則。本節課,讓學生有觀察,有思考,有討論,有練習,充分調動了學生的學習興趣,從而為高效率、高質量地上好這一堂課作好了充分的準備。

二次函數教學反思博客篇二

1、了解二次函數解析式的三種表示方法,拋物線的開口方向、頂點坐標、對稱軸以及拋物線與對稱軸的交點坐標等;

2、一元二次方程與拋物線的關系.

3、利用二次函數解決實際問題。

培養學生運用函數知識與幾何知識解決數學綜合題和實際問題的能力。

1、通過問題情境和探索活動的創設,激發學生的學習興趣;

2.讓學生感受到數學與人類生活的密切聯系,體會到學習數學的樂趣。

復習重、難點:函數綜合題型

復習方法:合作交流

1、二次函數解析式的三種表示方法:

(1)頂點式:(2)交點式:(3)一般式:

2、填表:

拋物線對稱軸頂點坐標開口方向

y=ax2

當a>0時,

開口

當a<0時,

開口

y=ax2+k

y=a(x-h)2

y=a(x-h)2+k

y=ax2+bx+c

3、二次函數y=ax2+bx+c,當a>0時,在對稱軸右側,y隨x的增大而,在對稱軸左側,y隨x的增大而;當a<0時,在對稱軸右側,y隨x的增大而,在對稱軸左側,y隨x的增大而

4、拋物線y=ax2+bx+c,當a>0時圖象有最點,此時函數有最值;當a<0時圖象有最點,此時函數有最值

自評分(每空4分,共100分)

已知二次函數y=ax2+bx+c的圖象如圖所示,試判斷下面各式的符號:

(1)abc(2)b2-4ac(3)2a+b(4)a+b+c

(上題主要考查學生對二次函數的圖象、性質的掌握情況:b2-4ac的符號看拋物線與x軸的交點情況;2a+b看對稱軸的位置;而a+b+c的符號要看x=1時y的值)

2、已知拋物線y=x2+(2k+1)x-k2+k

(1)求證:此拋物線與x軸總有兩個不同的交點;

(2)設a(x1,0)和b(x2,0)是此拋物線與x軸的兩個交點,且滿足x12+x22=-2k2+2k+1,①求拋物線的解析式

②此拋物線上是否存在一點p,使△pab的面積等于3,若存在,請求出點p的坐標;若不存在,請說明理由。

(此題主要考查拋物線與一元方程的根的判別式、根與系數的關系的聯系,以及函數與幾何知識的綜合)

提問:通過本節課的練習,你得到了什么?

一位運動員在距籃下4米處跳起投籃,球運行的路線是拋物線,當球運行的水平距離為2.5米時,達到的最大高度是3.5米,然后準確落入籃圈,已知籃球中心到地面的距離為3.05米,

(1)根據題意建立直角坐標系,并求出拋物線的解析式。

(2)該運動員的身高是1.8米,在這次跳投中,球在頭頂上方0.25米,問:球出手時,他跳離地面的高度是多少?

(此題把學生熟悉的運動員投籃問題與二次函數結合在一起,溶入了一定的生活背景,使學生產生數學學習興趣;同時培養了學生把實際問題抽象成數學模型的能力。)

已知拋物線y=x2+(1-2a)x+a2(a≠0)與x軸交于兩點a(x1,0),b(x2,0),(x1≠x2)

(1)求a的取值范圍,并證明a、b兩點都在原點的左側;

(2)若拋物線與y軸交于點c,且oa+ob=oc-2,求a的值。

課堂反思:以前的復習課總是寫滿幾塊小黑板,弄得手上全是粉筆末,一節課下來,光是翻轉小黑板就把自己搞得迷迷糊糊,并且學生還喊道:看不清楚?,F在好了,利用多媒體,可以把要講的知識點、學生要做的練習毫不含糊地全部展示給學生,確實做到了高容量、大密度。感覺很好。

二次函數教學反思博客篇三

這節課是在學完正、反比例、一次函數,認識了一元二次方程之后的二次函數的第一節課,從課本的體系來看,這節課明顯是要讓學生明白什么是二次函數,能區別二次函數與其他函數的不同,能深刻理解二次函數的一般形式,并能初步理解實際問題中對定義域的限制。

但是如果光從這些知識點上來講這節課,其實很簡單,學生在原有知識的儲備基礎上很容易遷移和接受這些知識,那么這節課還有什么好設計的呢?

重新思索教材的編寫意圖,發現課本這部分內容大部分篇幅是在講三個實際問題,由此引出了二次函數,我才意識其實這節課的重點實際上應該放在“經歷探索和表示二次函數關系的過程,獲得用二次函數表示變量之間關系的體驗,從而形成定義”上,有了這個認識,一切變得簡單了!

整節課的流程可以這樣概括:學生感興趣的簡單實際問題——引出學過的一次函數——復習學過的所有函數形式——設問:有沒有新的函數形式呢?——探索新的問題——形成關系式——是函數嗎?——是學過的函數嗎?——探索出新的函數形式——概括新函數形式的特點——將特點公式化——形成二次函數定義——有練習鞏固定義特點——返回實際問題討論實際問題對自變量的限制——提出新的問題,深入討論——課堂的小結,這樣設計一氣呵成,感覺上無拖沓生硬之處,最關鍵的是我認為這符合學生的基本認知規律,是容易讓學生理解和接受的。

對于實際問題的選擇,我將4個問題整和于同一個實際背景下,這樣設計既能引起學生興趣,也盡量減少學生審題的時間,顯得非常有層次性,這些實際問題貫穿整個課堂的始終,使整個課堂有渾然天成的感覺。

對于練習的設計,仍然采取了不重復的原則性,盡量做到每題針對一個問題,并進行及時的小結,也遵循了從開放到封閉的原則,達到了良好的效果。

對于最后討論題的設計和提出,是我在進行了整個一章的單元備課后發現,我們其實對二次函數的最值問題是不講的,但是不講并不代表一點都不會涉及到,其中用到的思想方法還是相當重要的,在圖象的觀察中也具有了重要的地位,再加上這個問題在進行了前面的實際問題的解答之后是呼之欲出的:多種樹——想提高產量——多種幾棵好呢?,所以我設計了這個探索性的問題:假如你是果園的主人,你準備多種幾棵?注意這里我并沒有提出最大最小值的問題,但是所有的學生都能理解到,這是數學的魅力。這個問題的提出是整節課的一個高潮和精華,是學生學完二次函數定義之后,綜合利用函數的基本知識,代數式的知識和一元二次方程的知識進行的思考,因而他們的想法和說法,不論對錯,不論全面還是有所偏頗,其中都涉及到了重要的數學思想方法,而這些恰恰是非常重要的。事實證明學生的思維真的是非常活躍的,你要你給了足夠的空間,他們總能從各方各面進行思考和解釋,我也從中看到了他們智慧的火花,這是很令人欣慰的。

二次函數教學反思博客篇四

就要期末考試了。我們今天復習了二次函數,立足于二次函數在初中數學函數教學中的地位,根據學生對二次函數的學習及掌握的情況,從梳理知識點出發采用以習題帶知識點的形式,我精心準備了《二次函數》的第一節復習課,教學重點為二次函數的圖象性質及應用。最初,“拋物線的開口方向、對稱軸、頂點坐標、增減性”這一相關性質復習設計中安排了3個訓練題目,其中第(2)小題側重在拋物線的對稱性與增減性,集體備課后我在復習側重方向上作了調整:加強利用配方法將二次函數一般式化頂點式、判斷拋物線對稱軸、借圖象分析函數增減性等的訓練,另外還預想借圖象識別2a與b的關系將是本節課的一個難點。本節通過建立函數體系回憶了二次函數的定義,其圖象與性質及與一次、反比例函數圖象的綜合應用,相繼進行,但此環節中“2a與b的關系”學生沒有提到,迫于突破此難點,我讓學生觀察課例圖象,并進一步引導觀察對稱軸的具體位置后,僅有十幾個學生準確理解、掌握,于是我進一步的分析“2a與b的關系”由對稱軸的具體位置決定,并說明由a>0與b>0能推導出2a+b>0的方法僅適于此題,但效果不盡人意,仍有一部分學生應用此法解決相關問題。如此導致處理二、2、(2)題時間緊張,使得重點不凸現。將第(3)題留為課后作業,來了個將錯就錯,為下一節課復習“二次函數與二元一次方程”的關系巧作鋪墊。

通過本節課的備課與教學,我受益匪淺,感受頗多:

1.每一個學生都有一定的知識體驗和生活積累,每個學生都會有各自的思維方式和解決問題的策略.這一堂課我讓學生成為數學學習的主人,自己充當數學學習的組織者,取得了意想不到的效果,學生不但能用一般式,頂點式解決問題,還能深層挖掘,巧妙地用兩根式解決問題,可見學生的潛力無窮。

2.本課遵循尊重學生,相信學生,依靠學生的“主體”教學思想,運用助思,助學,助練的啟發式教學方法,啟動了師生交流的“匣門”,使教學過程真正成為了師生間的雙向活動 。

3.在如何備復習課,準確把握一個單元及一節課的重點及突破難點方面有了很大提高;在巧妙駕馭課堂方面有了很大進步;在如何與他人相處方面有了更好的認識,踏踏實實地做人。

通過本節課的復習。今后我要:

1、深入鉆研教材是上好數學復習課的必要條件。有句話說的好“教材鉆的有多透有多深,教學方法就有多新有多活”。教師在課堂上的游韌有余完全得益于課前深入細致地鉆研教材。在研究教材的同時研究學生學習的基礎和學習的困難,找最佳突破口,使學生在輕松愉悅的學習氛圍下經歷學習過程。學生課堂上的輕松愉悅與一次次的成功體驗是教師課前花45分鐘的幾倍甚至幾十倍的鉆研時間換來的。

2、精心設計教學環節,組織調控好課堂活動。數學復習課的教學和新授課有著本質的區別,復習的量大,練習的內容多,環節雜亂。因此精心設計教學環節組織好課堂教學活動是一項非常重要的工作。因為學生的注意力不夠持久,如果教師在教學中語言生硬直白、缺少情感渲染,學習形式單調而不豐富,就是問、答、寫、練,一輪又一輪,學生感覺枯燥無味,也容易疲勞,怎么能對復習內容感興趣并保持積極呢?久而久之,對學習數學喪失了興趣和自信心,為后續學習埋下了隱患。課堂上采用多種形式的活動組織教學,激發學生的學習興趣,以取得更好的學習效果,是非常有必要的。在每一次活動前都要講清要求,使每個學生聽清要求,必要時做出示范。老師沒講清楚學生聽不明白就會出現課堂亂哄哄的低效現象,要做到既能放得出又能收得回。教師在課堂上要密切關注各小組同學參與學習的情況,及時表揚先進,樹立榜樣。

3、讓學生在熟悉的情境中復習數學,理解數學。情境創設要根據課時內容的需要而設計?;顒釉O計要緊緊圍繞課時教學內容的重點,而且要確立一條的主線,用這一根線把各個環節串起來,使課堂教學形成一個有機的整體,流暢自然中蘊涵著和諧與統一。

4、能動手的盡量讓學生多動手。有人曾經說過:“聽了,一會兒就忘了;看了,就記住了;動手操作了,就理解了。”學生的思維是從動作開始的,切斷動作與思維的聯系,思維就不能得到發展。手是腦的老師,說過百遍,不如手做一遍。所以讓學生在動手的過程中學習知識是必要的,是高效的。而多數老師在課堂上覺得這樣讓學生動手去做太耽誤時間,不如我自己演示來的快。這是非常錯誤的教學思想。

5、加強教學研究,促進教師間的經驗交流和相互協作,達到共同提高的目的。利用集體備課、教研組活動、課題實驗組活動等校本培訓形式搭建共同交流共同發展的平臺。對每一課時教學內容可利用課前幾分鐘,大家在一起說一說自己的教學設想,有新穎活潑緊扣教學內容而又容易操作的形式,取長補短相互借

總之,在實踐中獲得靈感,在交流中撞出智慧,在反思中調整思路,在堅持中取得進步。

二次函數教學反思博客篇五

在二次函數教學中,根據它在初中數學函數在教學中的地位,細心地準備《二次函數》的教學,教學重點為二次函數的圖象性質及應用,教學難點為a、b、c與二次函數的圖象的關系。根據反思備課過程和講課效果,感受頗深,有收獲,也有不足。

本章的教學是我對選題有了進一步認識,要體現教學目標,要有實際意義。要體現學生的“最近發展區”,有利于學生分析。如為了幫助學生建立二次函數的概念,從學生非常熟悉的正方形的面積的研究出發,通過建立函數解析式,歸納解析式特點,給出二次函數的定義。建立了二次函數概念后,再通過三個例題的分析和解決,促進學生理解和建構二次函數的概念,在建構概念的過程中,讓學生體驗從問題出發到列二次函數解析式的過程。體驗用函數思想去描述、研究變量之間變化規律的意義。

接下來教學主要從“拋物線的開口方向、對稱軸、頂點坐標、增減性”循序漸進,由特殊到一般的學習二次函數的性質,并幫助學生總結性的去記憶。在學習過程中加強利用配方法將二次函數一般式化頂點式、判斷拋物線對稱軸、借圖象分析函數增減性等的訓練。這部分內容就是中等偏下的學生容易混淆,還需掌握方法,加強記憶,強調必須利用圖形去分析。通過教學,讓學生對建模思想、圖形結合思想及分類討論思想都有了較清晰的認識,學會了分析問題的初步方法。

本章中二次函數上下左右的平移是我覺得上的比較成功的一部分,主要是借助多媒體,動態的展示了二次函數的平移過程,讓學生自己總結規律,很形象,便于記憶。

二次函數中含有三個字母系數,因此確定其解析式要三個獨立的條件,用待定系數法來解。學習確定二次函數的一般式,即的形式,這方面,學生的學習情況還是比較理想的,但方法沒有問題,計算能力還有待加強。

在學習了二次函數的知識后,我們嘗試運用于解決三個實際問題。問題1是根據實際問題建立函數解析式并學習如何確定函數的定義域;問題二是根據二次函數的解析式,分析二次函數的性質,并通過畫函數圖像檢驗作出的分析和判斷是否;問題三是綜合應用一次函數、二次函數的知識確定函數的解析式和定義域,并嘗試解決銷售問題中最大利潤的問題;通過這三個問題的分析和解決,讓學生初步體會二次函數在實際生活中的運用,再次感悟數學源于生活又服務于生活。雖然有部分學生尚不能熟練解決相關應用問題,但在下面的學習中會得到補充和提高。

但在教學中,我自認為熱情不夠,沒有積極調動學生學習熱情的語言,感染力不足。今后備課時要重視創設豐富而風趣的語言,來調動學生的積極性。

總之,在數學教學中不但要善于設疑置難,而且要理論聯系實際,只有這樣,才會吸引學生對數學學科的熱愛。

二次函數教學反思博客篇六

這是九年級剛上完二次函數新課后的一堂復習課,本堂課的目的是通過用多種方法求二次函數的解析式,從而培養學生的一題多解能力及探索意識。

問題:已知二次函數的圖象過點(1,0),在y軸上的截距為3,對稱軸是直線x=2,求它的函數解析式。

(給學生充分的思考時間)

師:哪位同學能把解法說一下?

生a:解:設二次函數解析式為y=ax2+bx+c,把(1,0),(0,3)代入,得

a+b+c=0

c=3

又因為對稱軸是x=2,所以—b/2a=2

所以得a+b+c=0

c=3

—b/2a=2

解得a=1

b=—4

c=3

所以所求解析式為y=x2—4x+3

師:兩點代入二次函數一般式必定出現不定式,能想到對稱軸,從而以三元一次方程組解得a,b,c,不錯!除此方法外,還有沒有其他方法,大家可以相互討論一下。

(同學們開始討論,思考)

生b:我認為此題可用頂點式,即設二次函數解析式為y=a(x—2)2+k,把(1,0),(0,3)代入,得

a+k=0

4a+k=3

解得a=1

k=—1

故所求二次函數的解析式為y=(x—2)2—1,即y=x2—4x+3

師:非常好。那還有沒有其他方法,請大家再思考一下。

(學生沉默一會兒,有人舉手發言)

生c:因為對稱軸是直線x=2,在y軸上的截距為3,我認為該二次函數解析式可設為y=ax2—4ax+3,在把(1,0)代入得a—4a+3=0,解得a=1,所以所求解析式為y=x2—4x+3

師:設得巧妙,這個函數解析式只含一個字母,這給運算帶來很大方便,很好,很善于思考。大家再想想看,是否還有其他解題途徑。

(學生們又挖空心思地思考起來,終于有一學生打破沉寂)

生d:由于圖象過點(1,0),對稱軸是直線x=2,故得與x軸的另一交點為(3,0),所以可用兩根式設二次函數解析式為y=a(x—1)(x—3),再把(0,3)代入,得a=1,

所以二次函數解析式為y=(x—1)(x—3),即y=x2—4x+3

(同學們給生d以熱烈的掌聲)

師:函數本身與圖形是不可分割的,能數形結合,非常不錯,用兩根式解此題,非常獨到。

(至此下課時間快到,原先設計好的三題只完成一題,但看到學生的探索的可愛勁,不能按課前安排完成內容又有何妨呢?)

師:最后,請同學們想一下,通過本堂課的學習,你獲得了什么?

生1:我知道了求二次函數解析式方法有:一般式,頂點式,兩根式。

生2:我獲得了解題的能力,今后做完一道題目,我會思考還有沒有更好的方法。

1。每一個學生都有豐富的知識體驗和生活積累,每一個學生都會有各自的思維方式和解決問題的策略。而我對他們的能力經常低估,在以往的上課過程中,總喋喋不休,深怕講漏了什么,但一堂課下來,學生收獲甚微。本堂課,我賦予學生較多的思考和交流的機會,試著讓學生成為數學學習的主人,我自己充當了一回數學學習的組織者,沒想到取得了意想不到的效果,學生不但能用一般式,頂點式解決此題,還能深層挖掘巧妙地用兩根式解決此題,學生的潛力真是無窮。

2。通過本堂課的教學,我想了很多。新課程改革要求教師要有現代的教學觀、學生觀,才能培養出具有創新精神和實踐能力的下一代。所以教師應當走下“教壇”,與學生在民主、平等的氛圍中交流意見,共同探討問題。學生的主動參與是學習活動有效進行的關鍵所在,因此教師還應該在學生“學”上進行改革,從學生的實際出發,從學生的生活出發,才能把學生從被動聽的束縛中解放出來,使學生真正成為學習的主人。本節課教師始終與學生保持著平等和相互尊重,為學生探究學習提供了前提條件。

問題是無窮盡而活的,只有讓學生主動探索,才能真正地理解,鞏固知識點,從而運用知識點,即真正知其所以然。今后,我將不斷嘗試,不斷完善自身,使學生的討論和思考更有意義。

二次函數教學反思博客篇七

教學目標的設定:

一、 教學知識點:

(1)、 經歷探索二次函數與一元二次方程的關系的過程,體會方程與函數之間的聯系.

(2)、 理解二次函數與 x 軸交點的個數與一元二次方程的根的關系,理解何時方程有兩個不等的實根、兩個相等的實根和沒有實根.

(3)、 理解一元二次方程的根就是二次函數與y =h 交點的橫坐標.

二、 能力訓練要求:

(1)、經歷探索二次函數與一元二次方程的關系的過程,培養學生的探 索能力和創新精神。

(2)、通過觀察二次函數與x 軸交 點的個數,討論 一元二次方程的根的情況,進一步培養學生的數形結合思想.

(3)、通過學生共同觀察和討論,培養合作交流意識.

三、 情感與價值觀要求

(1)、 經歷探索二次函數與一元二次方程的關系的過程,體驗數學活動充滿著探索與創造,感受數學的嚴謹性以及數學結論的確定性.

(2)、 具有初步的創新精神和實踐能力.

教學重點:(1).體會方程與函數之間的聯系.

(2).理解何 時方程有兩個不等的實根、兩個相等的實根和沒有實根.

(3).理解一元二次方程的根就是二次函數與y =h 交點的橫坐標.

教學難點(1)、探索方程與函數之間的聯系的過程.

(2)、理解二次函數與x 軸交點的個數與一元二次方程的根的個數之間的關系. 解決重難點的方法1、 設問題情境,引入新課

我們已學過一元一次方程kx+b=0 (k≠0)和一次函數y =kx+b (k≠0)的關系,你還記得嗎?

它們之間的關系是:當一次函數中的函數值y =0時,一次函數y =kx+b就轉

化成了一元一次方 程kx+b=0,且一次函數的圖像與x 軸交點的橫坐標即為一元一次方程kx+b=0的解.

現在我們學習了一元二次方程和二次函數,它們之間是否也存在一定的關系呢?本節課我們將探索這個問題.

二次函數教學反思博客篇八

二次是函數是函數中的重點、難點,它比較復雜,一般來說我們研究它是先研究其本身性質、圖象,進而擴展到應用,它在現實中應用較廣,我們在教學中要緊密結合實際,讓學生學有所用,在教學中應注意以下幾個問題:

(一)把握好課標。九年義務教育初中數學教學大綱卻降低了對二次函數的教學要求,只要求學生理解二次函數和拋物線的有關概念,會用描點法畫出二次函數的圖像;會用配方法確定拋物線的頂點和對稱軸;會用待定系數法由已知圖像上三點的坐標求二次函數的解析式。

(二)把實際問題數學化。首先要深入了解實際問題的背景,了解影響問題變化的主要因素,然后在舍棄問題中的非本質因素的基礎上,應用有關知識把實際問題抽象成為數學問題,并進而解決它。

(三)函數的教學應注意自變量與函數之間的變化對應。函數問題是一個研究動態變化的問題,讓學生理解動態變化中自變量與函數之間的變化對應,可能更有助于學生對函數的學習。

(四)二次函數的教學應注意數形結合。要把函數關系式與其圖像結合起來學習,讓學生感受到數和形結合分析解決問題的優勢。

(五)建立二次函數模型。利用二次函數來解決實際問題,重在建立二次函數模型。但是在解決最值問題時得注意,有時理論上的最大值(或最小值)不是實際生活中的最值,得考慮實際意義。

(六)注重二次函數與一元二次方程、一元二次不等式的關系。利用二次函數的圖像可以得到對應一元二次方程的解、一元二次不等式的解集。

二次函數教學反思博客篇九

求函數解析式是初中數學主要內容之一,求二次函數的解析式也是聯系高中數學的重要紐帶。求函數的解析式,應恰當地選用函數解析式的形式,選擇得當,解題簡捷,若選擇不當,解題繁瑣。在新課標里求函數解析式也是中考的必考內容,而在初中階段主要學習了正比例函數、一次函數、反比例函數、二次函數。下面談談本人在教學和復習求函數解析式的具體做法:

待定系數法是初中數學的一種重要解題方法,對于每位學生都必須掌握,并能熟練應用此法來求函數的解析式。待定系數法的基本步驟是:假設所求函數的解析式;把已知的量代入函數關系式,聯列方程(組);求出方程(組)的解。

(1)、二次函數一般關系式:y=ax2+bx+c(a≠0)

(2)二次函數頂點式:y=a(x—h)2+k

對于以上這兩種函數,要求學生理解關系式,及其性質和圖象。

y=ax2+bx+c(a≠0)這是一個二元二次方程,若要求a、b、c,必須知道三個不同的解,然后聯立方程組,從而求出a、b、c的值。

曾聽過這樣的一個比喻,說“教師就象用以識別地圖的圖例”。教師必須解釋教學過程中不同階段出現的標志,使學生不斷地追求、探索和獲得。細究起來,它包涵著深層的含義:教師必須不斷豐富自己的內涵、增強自己的業務技能,才能適應教學中時刻變化的新情況,才能照亮學生成長之路中的每一個標志。教學中,我深深地體會到:要想讓學生真正掌握求函數解析式的方法,教師應在給出相應的典型例題條件下,讓學生自己去尋找答案,自己去發現規律。最后,教師清楚地向學生總結每一種函數解析式的適用范圍及一般應已知的條件。在信息社會飛速發展的今天,我們教師要從以前的教師教、學生學的觀念中解放出來。《數學課程標準》提出:教師不僅是學生的引導者,也是學生的合作者。教學中,要讓學生通過自主討論、交流,來探究學習中碰到的問題、難題,教師從中點撥、引導,并和學生一起學習,探討,真正做到教學相長。

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔
a.付費復制
付費獲得該文章復制權限
特價:5.99元 10元
微信掃碼支付
已付款請點這里
b.包月復制
付費后30天內不限量復制
特價:9.99元 10元
微信掃碼支付
已付款請點這里 聯系客服
主站蜘蛛池模板: 亚洲综合20p | 国卡一卡二卡三免费网站 | 毛片a级三毛片免费播放 | 欲漫涩漫画禁漫成人入口 | 天天插天天摸 | 99国产精品久久久久久久成人热 | 亚洲图片欧美视频 | 黄污视频在线 | 九九99靖品| 国产一卡二卡三卡 | 国产一区二区三区在线观看精品 | 中文字幕22页 | 亚洲精品乱码国产精品乱码 | 在线观看色视频网站 | 窝窝视频成人影院午夜在线 | 国产综合精品在线 | 欧美日韩视频在线第一区二区三区 | 亚洲作爱视频 | 久久成人免费大片 | 国产精品2020观看久久 | 美国一级片网站 | 性插久久 | 色狠狠狠色噜噜噜综合网 | 最近中文字幕视频 | 91短视频免费在线观看 | 国产欧美精品区一区二区三区 | 日本黄网在线观看 | 国产一区在线视频 | 高清欧美在线三级视频 | 欧美成人免费高清网站 | 60岁欧美乱子伦xxxx | 欧美国产在线看 | 黄色片视频在线观看 | 在线国产视频 | 成 人 a v免费视频 | jizzjizz丝袜老师 | 噜噜噜天天躁狠狠躁夜夜精品 | 99精品视频在线观看 | 精品伊人久久久99热这里只 | 欧美一级特黄啪啪片免费看 | 国产日韩欧美中文 |