總結是指對某一階段的工作、學習或思想中的經(jīng)驗或情況加以總結和概括的書面材料,它可以明確下一步的工作方向,少走彎路,少犯錯誤,提高工作效益,因此,讓我們寫一份總結吧。相信許多人會覺得總結很難寫?下面是小編帶來的優(yōu)秀總結范文,希望大家能夠喜歡!
初中數(shù)學總結歸納篇一
比如,初中引入了平方計算,有的孩子理解不了平方的算法,會把3的平方算成6。
比如,初中引入了負數(shù),也有絕對值和相反數(shù)的概念,但是有的孩子分不清絕對值和相反數(shù)的概念,如果不能理解題目的要求,就會寫錯結果。
比如,1-3=1+(-3),減一個數(shù)等于加上它的相反數(shù),并且要加括號,或者反過來要去括號,有的孩子不理解這個過程,就會在計算中犯錯。
那么概念理解出問題該如何加強呢?
首先,要幫助孩子建立起重視概念理解的意識。因為很多問題的產生,都是理解不到位引起的。
其次,注意孩子理解的情況,是與哪一種他以前學習的概念或者相似概念混淆的,比如把乘法和乘方弄混,要仔細講解這二者從形式上到計算結構上的差別。幫助孩子建立,看到什么形式要用什么樣處理方法的“條件反射”。
比如,初中引入了平方計算,有的孩子理解不了平方的算法,會把3的平方算成6。
比如,初中引入了負數(shù),也有絕對值和相反數(shù)的概念,但是有的孩子分不清絕對值和相反數(shù)的概念,如果不能理解題目的要求,就會寫錯結果。
比如,1-3=1+(-3),減一個數(shù)等于加上它的相反數(shù),并且要加括號,或者反過來要去括號,有的孩子不理解這個過程,就會在計算中犯錯。
再者,因為這個時候孩子還不能很好地自己做總結,所以我們要幫著孩子總結課本上的重要概念,及概念運用的經(jīng)典案例,發(fā)現(xiàn)錯誤及時糾正,引導孩子及時復習,直到最終在腦海中建立正確的概念。因為剛上初中,新的概念還不多,所以一開始家長能盯得緊一點,孩子進入正軌之后,就能夠比較好了。
出現(xiàn)的第二個大問題,來自于習慣。有些習慣在小學養(yǎng)成,小學題目比較簡單,還不會有明顯的影響,但到了初中,難度逐漸上升以后,這些習慣會有很大危害。
習慣里面又分三個經(jīng)典問題:解題不愛用草稿紙,不會的時候干瞪眼不翻筆記,以及知識掌握一知半解就比較懶散不記不練了。
小學的知識學習,難度低一些,這些習慣影響不大,不容易被發(fā)現(xiàn)。但到了初中,家長們要注意一下,一定要早發(fā)現(xiàn),早糾正。因為早的話,可以為后面的學習提升效率,鋪平道路,反之,晚發(fā)現(xiàn)會讓知識漏洞越來越多,知識體系越龐大反而越脆弱,再補起來就會很棘手。
筆者發(fā)現(xiàn),很多剛上初中的孩子,在解題的時候,習慣不用草稿紙,干盯著題口算答案。這對于小學簡單題目時,還可以保持較好的正確率,但是初中推理步驟長了,再瞪眼口算,錯誤率會大大增加,這個時候,必須要使用草稿紙,并且要告訴孩子為什么要用草稿紙,以及幫助他養(yǎng)成用好草稿紙的習慣。開學的一兩個月里,習慣的培養(yǎng)非常重要。
剛上初中,講解的內容比較簡單,筆記記錄不多,但這個時候,要有意識地鼓勵孩子,去更好的記錄筆記。同時,一些記了筆記的孩子,還會發(fā)生一個新的問題,就是題目不會做的時候,會干瞪著題想,不知道去筆記上翻例題、公式,然后再解。雖然我們不能讓孩子形成不背公式看筆記做題的習慣,但是,我們也希望孩子,在沒有老師在身邊時,能夠形成自己找到學習資料,找到解題辦法的意識和能力
初中數(shù)學總結歸納篇二
1、做好預習:
單元預習時粗讀,了解近階段的學習內容,課時預習時細讀,注重知識的形成過程,對難以理解的概念、公式和法則等要做好記錄,以便帶著問題聽課。
2、認真聽課:
聽課應包括聽、思、記三個方面。聽,聽知識形成的來龍去脈,聽重點和難點,聽例題的解法和要求。思,一是要善于聯(lián)想、類比和歸納,二是要敢于質疑,提出問題。記,指課堂筆記——記方法,記疑點,記要求,記注意點。
3、認真解題:
課堂練習是最及時最直接的反饋,一定不能錯過。不要急于完成作業(yè),要先看看你的筆記本,回顧學習內容,加深理解,強化記憶。
4、及時糾錯:
課堂練習、作業(yè)、檢測,反饋后要及時查閱,分析錯題的原因,必要時強化相關計算的訓練。不明白的問題要及時向同學和老師請教了,不能將問題處于懸而未解的狀態(tài),養(yǎng)成今日事今日畢的好習慣。
5、學會總結:
馮老師說:“數(shù)學一環(huán)扣一環(huán),知識間的聯(lián)系非常緊密,階段性總結,不僅能夠起到復習鞏固的作用,還能找到知識間的聯(lián)系,做到了然于心,融會貫通。
6、學會管理:
管理好自己的筆記本,作業(yè)本,糾錯本,還有做過的所有練習卷和測試卷。
初中數(shù)學總結歸納篇三
1、配方法
所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數(shù)次冪的和形式。通過配方解決數(shù)學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學中一種重要的恒等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎,它作為數(shù)學的一個有力工具、一種數(shù)學方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數(shù)等等。
3、換元法
換元法是數(shù)學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復雜4、判別式法與韋達定理
一元二次方程a_2+b_+c=0(a、b、c屬于r,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應用外,還可以求根的對稱函數(shù),計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。
5、待定系數(shù)法
在解數(shù)學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設條件列出關于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關系,從而解答數(shù)學問題,這種解題方法稱為待定系數(shù)法。它是中學數(shù)學中常用的方法之一。
6、構造法
在解題時,我們常常會采用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數(shù)學方法,我們稱為構造法。運用構造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學知識互相滲透,有利于問題的解決。
7、反證法
反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然后,從這個假設出發(fā),經(jīng)過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。
反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;/至少有兩個。
歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發(fā),否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。
8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯(lián)系起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關系變成數(shù)量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
9、幾何變換法
在數(shù)學問題的研究中,,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數(shù)學中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數(shù)學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利于對圖形本質的認識。
幾何變換包括:(1)平移;(2)旋轉;(3)對稱。
10、客觀性題的解題方法
選擇題是給出條件和結論,要求根據(jù)一定的關系找出正確答案的一類題型。選擇題的題型構思精巧,形式靈活,可以比較全面地考察學生的基礎知識和基本技能,從而增大了試卷的容量和知識覆蓋面。
填空題是標準化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷準確迅速,有利于考查學生的分析判斷能力和計算能力等優(yōu)點,不同的是填空題未給出答案,可以防止學生猜估答案的情況。
要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。
(1)直接推演法:直接從命題給出的條件出發(fā),運用概念、公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。
(2)驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。
(3)特殊元素法:用合適的特殊元素(如數(shù)或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。
(4)排除、篩選法:對于正確答案有且只有一個的選擇題,根據(jù)數(shù)學知識或推理、演算,把不正確的結論排除,余下的結論再經(jīng)篩選,從而作出正確的結論的解法叫排除、篩選法。
(5)圖解法:借助于符合題設條件的圖形或圖像的性質、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。
(6)分析法:直接通過對選擇題的條件和結論,作詳盡的分析、歸納和判斷,從而選出正確的結果,稱為分析法。