很多小伙伴對蘇教版中考數學考點大綱非常感興趣,尤其是中考數學考點繁多,不知道2021蘇教版中考數學考點大綱,為了解答小伙伴的疑惑,小編已經整理了一些資料,僅供大家參考哦。
2021蘇教版中考數學考點大綱
軸對稱知識點
1.如果一個圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
2.軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
3.角平分線上的點到角兩邊距離相等。
4.線段垂直平分線上的任意一點到線段兩個端點的距離相等。
5.與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
6.軸對稱圖形上對應線段相等、對應角相等。
7.畫一圖形關于某條直線的軸對稱圖形的步驟:找到關鍵點,畫出關鍵點的對應點,按照原圖順序依次連接各點。
8.點(x,y)關于x軸對稱的點的坐標為(x,-y)
點(x,y)關于y軸對稱的點的坐標為(-x,y)
點(x,y)關于原點軸對稱的點的坐標為(-x,-y)
9.等腰三角形的性質:等腰三角形的兩個底角相等,(等邊對等角)
等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為三線合一。
10.等腰三角形的判定:等角對等邊。
11.等邊三角形的三個內角相等,等于60,
12.等邊三角形的判定:三個角都相等的三角形是等腰三角形。
有一個角是60的等腰三角形是等邊三角形
有兩個角是60的三角形是等邊三角形。
13.直角三角形中,30角所對的直角邊等于斜邊的一半。
不等式
1.掌握不等式的基本性質,并會靈活運用:
(1)不等式的兩邊加上(或減去)同一個整式,不等號的方向不變,即:如果a>b,那么a+c>b+c,a-c>b-c。
(2)不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變,即:如果a>b,并且c>0,那么ac>bc。
(3)不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變,即:如果a>b,并且c<0,那么ac
2.比較大小:(a、b分別表示兩個實數或整式)
一般地:如果a>b,那么a-b是正數;反過來,如果a-b是正數,那么a>b;如果a=b,那么a-b等于0;反過來,如果a-b等于0,那么a=b;
即:a>b<===>a-b>0;a=b<===>a-b=0;aa-b<0。
3.不等式的解集:能使不等式成立的未知數的值,叫做不等式的解;一個不等式的所有解,組成這個不等式的解集;求不等式的解集的過程,叫做解不等式。
4.不等式的解集在數軸上的表示:用數軸表示不等式的解集時,要確定邊界和方向:①邊界:有等號的是實心圓圈,無等號的是空心圓圈;②方向:大向右,小向左。
中考數學考點分析
因式分解的方法
1.十字相乘法
(1)把二次項系數和常數項分別分解因數;
(2)嘗試十字圖,使經過十字交叉線相乘后所得的數的和為一次項系數;
(3)確定合適的十字圖并寫出因式分解的結果;
(4)檢驗。
2.提公因式法
(1)找出公因式;
(2)提公因式并確定另一個因式;
①找公因式可按照確定公因式的方法先確定系數再確定字母;
②提公因式并確定另一個因式,注意要確定另一個因式,可用原多項式除以公因式,所得的商即是提公因式后剩下的一個因式,也可用公因式分別除去原多項式的每一項,求的剩下的另一個因式;
③提完公因式后,另一因式的項數與原多項式的項數相同。
3.待定系數法
(1)確定所求問題含待定系數的一般解析式;
(2)根據恒等條件,列出一組含待定系數的方程;
(3)解方程或消去待定系數,從而使問題得到解決。
一元一次方程的解法
1.一般方法:
①去分母:去分母是指等式兩邊同時乘以分母的最小公倍數。
②去括號:括號前是“+”,把括號和它前面的“+”去掉后,原括號里各項的符號都不改變。括號前是“-”,把括號和它前面的"-"去掉后,原括號里各項的符號都要改變。(改成與原來相反的符號。
③移項:把方程兩邊都加上(或減去)同一個數或同一個整式,就相當于把方程中的某些項改變符號后,從方程的一邊移到另一邊,這樣的變形叫做移項。
④合并同類項:通過合并同類項把一元一次方程式化為最簡單的形式:ax=b(a≠0)。
⑤系數化為1。
2.圖像法:一元一次方程ax+b=0(a≠0)的根就是它所對應的一次函數f(x)=ax+b函數值為0時,自變量x的值,即一次函數圖象與x軸交點的橫坐標。
3.求根公式法:對于關于x的一元一次方程ax+b=0(a≠0),其求根公式為:x=-b/a。
整式
1.整式:整式為單項式和多項式的統稱,是有理式的一部分,在有理式中可以包含加,減,乘,除、乘方五種運算,但在整式中除數不能含有字母。
2.乘法
(1)同底數冪相乘,底數不變,指數相加。
(2)冪的乘方,底數不變,指數相乘。
(3)積的乘方,先把積中的每一個因數分別乘方,再把所得的冪相乘。
3.整式的除法
(1)同底數冪相除,底數不變,指數相減。
(2)任何不等于零的數的零次冪為1。
中考數學考點大綱
一、圓的基本性質
1、圓的定義(兩種)
2、有關概念:弦、直徑;弧、等弧、優弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。
3、“三點定圓”定理
4、垂徑定理及其推論
5、“等對等”定理及其推論
6、與圓有關的角:⑴圓心角定義(等對等定理)⑵圓周角定義(圓周角定理,與圓心角的關系)⑶弦切角定義(弦切角定理)
二、直線和圓的位置關系
1、三種位置及判定與性質:
2、切線的性質(重點)
3、切線的判定定理(重點)。圓的切線的判定有⑴…⑵…
4、切線長定理
三、圓換圓的位置關系
1、五種位置關系及判定與性質:(重點:相切)
2、相切(交)兩圓連心線的性質定理
3、兩圓的公切線:⑴定義⑵性質
四、與圓有關的比例線段
1。相交弦定理
2。切割線定理
五、與和正多邊形
1、圓的內接、外切多邊形(三角形、四邊形)
2、三角形的外接圓、內切圓及性質
3、圓的外切四邊形、內接四邊形的性質
4、正多邊形及計算
六、一組計算公式
1、圓周長公式
2、圓面積公式
3、扇形面積公式
4、弧長公式
5、弓形面積的計算方法
6、圓柱、圓錐的側面展開圖及相關計算
七、點的軌跡
六條基本軌跡
八、有關作圖
1、作三角形的外接圓、內切圓
2、平分已知弧
3、作已知兩線段的比例中項
4、等分圓周:4、8;6、3等分
九、基本圖形
十、重要輔助線
1、作半徑
2、見弦往往作弦心距
3、見直徑往往作直徑上的圓周角
4、切點圓心莫忘連
5、兩圓相切公切線(連心線)
6、兩圓相交公共弦
以上就是2021蘇教版中考數學考點大綱 2021蘇教版中考數學大綱最新的內容,希望能對小伙伴們有所幫助,如果想要了解更多相關資訊,請關注可圈可點網。
【2021蘇教版中考數學考點大綱 2021蘇教版中考數學大綱最新】相關推薦文章: