1.總結是對一段時間內工作、學習、生活等方面的經驗和成果進行總結與歸納。總結時要注意全面性,不只局限于某一方面,要全面概括和總結。總結是對自己努力和成果的一種記錄和證明,以下范文或許能激發你的寫作靈感和動力。
數學家數學知識點總結篇一
:正、負數的概念:我們把像3、2、+0.5、0.03%這樣的數叫做正數,它們都是比0大的數;像-3、-2、-0.5、-0.03%這樣數叫做負數。它們都是比0小的數。0既不是正數也不是負數。我們可以用正數與負數表示具有相反意義的量。
:有理數的概念和分類:整數和分數統稱有理數。有理數的分類主要有兩種:
注:有限小數和無限循環小數都可看作分數。
:數軸的概念:像下面這樣規定了原點、正方向和單位長度的直線叫做數軸。
:絕對值的概念:
(1)幾何意義:數軸上表示a的點與原點的距離叫做數a的絕對值,記作|a|;
(2)代數意義:一個正數的絕對值是它的本身;一個負數的絕對值是它的相反數;零的絕對值是零。
注:任何一個數的絕對值均大于或等于0(即非負數).
:相反數的概念:
(2)代數意義:符號不同但絕對值相等的兩個數叫做互為相反數。0的相反數是0。
:有理數大小的比較:
有理數大小比較的基本法則:正數都大于零,負數都小于零,正數大于負數。
數軸上有理數大小的比較:在數軸上表示的兩個數,右邊的數總比左邊的大。
用絕對值進行有理數大小的比較:兩個正數,絕對值大的正數大;兩個負數,絕對值大的負數反而小。
:有理數加法法則:
(1)同號兩數相加,取相同的符號,并把絕對值相加;
(3)一個數與0相加,仍得這個數.
:有理數加法運算律:
加法交換律:兩個數相加,交換加數的位置,和不變。
加法結合律:三個數相加,先把前兩個數相加,或者先把后兩個數相加,和不變。
:有理數減法法則:減去一個數,等于加上這個數的相反數。
:有理數加減混合運算:根據有理數減法的法則,一切加法和減法的運算,都可以統一成加法運算,然后省略括號和加號,并運用加法法則、加法運算律進行計算。
數學家數學知識點總結篇二
3、一個數與0相加,仍得這個數。
有理數加法的運算律
1、加法的交換律:a+b=b+a;
2、加法的結合律:(a+b)+c=a+(b+c)
有理數減法法則
減去一個數,等于加上這個數的相反數;即a—b=a+(—b)
有理數乘法法則
1、兩數相乘,同號為正,異號為負,并把絕對值相乘;
2、任何數同零相乘都得零;
3、幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定。
數學家數學知識點總結篇三
主要是考函數和導數,因為這是整個高中階段中最核心的部分,這部分里還重點考察兩個方面:第一個函數的性質,包括函數的單調性、奇偶性;第二是函數的解答題,重點考察的是二次函數和高次函數,分函數和它的一些分布問題,但是這個分布重點還包含兩個分析。
對于這部分知識重點考察三個方面:是劃減與求值,第一,重點掌握公式和五組基本公式;第二,掌握三角函數的圖像和性質,這里重點掌握正弦函數和余弦函數的性質;第三,正弦定理和余弦定理來解三角形,這方面難度并不大。
數列這個板塊,重點考兩個方面:一個通項;一個是求和。
在里面重點考察兩個方面:一個是證明;一個是計算。
概率和統計主要屬于數學應用問題的范疇,需要掌握幾個方面:……等可能的概率;……事件;獨立事件和獨立重復事件發生的概率。
這部分內容說起來容易做起來難,需要掌握幾類問題,第一類直線和曲線的位置關系,要掌握它的通法;第二類動點問題;第三類是弦長問題;第四類是對稱問題;第五類重點問題,這類題往往覺得有思路卻沒有一個清晰的答案,但需要要掌握比較好的算法,來提高做題的準確度。
同學們在最后的備考復習中,還應該把重點放在不等式計算的方法中,難度雖然很大,但是也切忌在試卷中留空白,平時多做些壓軸題真題,爭取能解題就解題,能思考就思考。
數學家數學知識點總結篇四
有一個角是直角的平行四邊形叫做矩形。
(1)具有平行四邊形的一切性質。
(2)矩形的四個角都是直角。
(3)矩形的對角線相等。
(4)矩形是軸對稱圖形。
(1)定義:有一個角是直角的平行四邊形是矩形。
(2)定理1:有三個角是直角的四邊形是矩形。
(3)定理2:對角線相等的平行四邊形是矩形。
s矩形=長×寬=ab。
1、正方形的概念。
有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形。
2、正方形的性質。
(1)具有平行四邊形、矩形、菱形的一切性質;
(2)正方形的四個角都是直角,四條邊都相等;
(3)正方形的兩條對角線相等,并且互相垂直平分,每一條對角線平分一組對角;
(4)正方形是軸對稱圖形,有4條對稱軸;
(6)正方形的一條對角線上的一點到另一條對角線的兩端點的距離相等。
3、正方形的判定。
(1)判定一個四邊形是正方形的主要依據是定義,途徑有兩種:
先證它是矩形,再證有一組鄰邊相等。
先證它是菱形,再證有一個角是直角。
(2)判定一個四邊形為正方形的一般順序如下:
先證明它是平行四邊形;
再證明它是菱形(或矩形);
最后證明它是矩形(或菱形)。
數學家數學知識點總結篇五
經過一點可以作無數個圓。
經過兩點也可以作無數個圓,且圓心都在連結這兩點的線段的垂直平分線上。
定理:過不共線的三個點,可以作且只可以作一個圓。
推論:三角形的三邊垂直平分線相交于一點,這個點就是三角形的外心。
三角形的三條高線的交點叫三角形的垂心。
1.2垂徑定理。
圓是中心對稱圖形;圓心是它的對稱中心。
圓是周對稱圖形,任一條通過圓心的直線都是它的對稱軸。
定理:垂直于弦的直徑平分這條弦,并且評分弦所對的兩條弧。
推論1:平分弦(不是直徑)的直徑垂直于弦并且平分弦所對的兩條弧。
推論2:弦的垂直平分弦經過圓心,并且平分弦所對的兩條弧。
推論3:平分弦所對的一條弧的直徑,垂直評分弦,并且平分弦所對的另一條弧。
1.3弧、弦和弦心距。
定理:在同圓或等圓中,相等的弧所對的弦相等,所對的弦的弦心距相等。
二圓與直線的位置關系。
2.1圓與直線的位置關系。
如果一條直線和一個圓沒有公共點,我們就說這條直線和這個圓相離。
定理:經過圓的半徑外端點,并且垂直于這條半徑的直線是這個圓的切線。
定理:圓的切線垂直經過切點的半徑。
推論1:經過圓心且垂直于切線的直線必經過切點。
推論2:經過切點且垂直于切線的直線必經過圓心。
直線和圓的位置關系只能由相離、相切和相交三種。
2.2三角形的內切圓。
定理:三角形的三個內角平分線交于一點,這點是三角形的內心。
2.3切線長定理。
2.4圓的外切四邊形。
定理:圓的外切四邊形的兩組對邊的和相等。
定理:如果四邊形兩組對邊的和相等,那么它必有內切圓。
三圓與圓的位置關系。
來自 www.cdxkw.cn
3.1兩圓的位置關系。
經過兩個圓的圓心的直線,叫做兩圓的連心線,兩個圓心之間的距離叫做圓心距。
定理:兩圓的連心線是兩圓的對稱軸,并且兩圓相切時,它們切點在連心線上。
(1)兩圓外離dr+r。
(2)兩圓外切d=r+r。
(3)兩圓相交r-rdr)。
(4)兩圓內切d=r-r(rr)。
(5)兩圓內含dr)。
特殊情況,兩圓是同心圓d=0。
3.2兩圓的公切線。
定理:兩圓的兩條外公切線的長相等;兩圓的兩條內公切線的長也相等。
數學家數學知識點總結篇六
0既不是正數,也不是負數。
(2)正數和負數表示相反意義的量。
(1)數軸的三要素:原點、正方向、單位長度。數軸是一條直線。
(2)所有有理數都可以用數軸上的點來表示,但數軸上的點不一定都是有理數。
(3)數軸上,右邊的數總比左邊的數大;表示正數的點在原點的右側,表示負數的點在原點的左側。
(2)相反數:符號不同、絕對值相等的兩個數互為相反數。
若a、b互為相反數,則a+b=0;
相反數是本身的是0,正數的相反數是負數,負數的相反數是正數。
(3)絕對值最小的數是0;絕對值是本身的數是非負數。
最小的正整數是1,最大的負整數是-1。
兩個正數比較:絕對值大的那個數大;
兩個負數比較:先算出它們的絕對值,絕對值大的反而小。
(1)符號相同的兩數相加:和的符號與兩個加數的符號一致,和的絕對值等于兩個加數絕對值之和.
(2)符號相反的兩數相加:當兩個加數絕對值不等時,和的符號與絕對值較大的加數的符號相同,和的絕對值等于加數中較大的絕對值減去較小的絕對值;當兩個加數絕對值相等時,兩個加數互為相反數,和為零.
(3)一個數同零相加,仍得這個數.
加法的交換律:a+b=b+a
加法的結合律:(a+b)+c=a+(b+c)
減去一個數,等于加上這個數的相反數。
例如:14+12+(-25)+(-17)可以寫成省略括號的形式:14+12 -25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負25、負17的和.”
兩個數相乘,同號得正,異號得負,再把絕對值相乘;任何數與0相乘都得0。
第一步:確定積的符號 第二步:絕對值相乘
當負因數有偶數個時,積為正。幾個有理數相乘,有一個因數為零,積就為零。
乘積為1的兩個數互為倒數,0沒有倒數。
正數的倒數是正數,負數的倒數是負數。(互為倒數的兩個數符號一定相同)
倒數是本身的只有1和-1。
數學家數學知識點總結篇七
1、重心的定義:平面圖形中,幾何圖形的重心是當支撐或懸掛時圖形能在水平面處于平衡狀態,此時的支撐點或者懸掛點叫做平衡點,也叫做重心。
2、幾種幾何圖形的重心:
(1)線段的重心就是線段的中點;
(2)平行四邊形及特殊平行四邊形的重心是它的兩條對角線的交點;
(3)三角形的三條中線交于一點,這一點就是三角形的重心;
(4)任意多邊形都有重心,以多邊形的任意兩個頂點作為懸掛點,把多邊形懸掛時,過這兩點鉛垂線的交點就是這個多邊形的重心。
提示:
(1)無論幾何圖形的形狀如何,重心都有且只有一個;
(2)從物理學角度看,幾何圖形在懸掛或支撐時,位于重心兩邊的力矩相同。
3、常見圖形重心的性質:
(1)線段的重心把線段分為兩等份;
(2)平行四邊形的重心把對角線分為兩等份;
(3)三角形的重心把中線分為1:2兩部分(重心到頂點距離占2份,重心到對邊中點距離占1份)。
上面對重心知識點的鞏固學習,同學們都能熟練的掌握了吧,希望同學們很好的復習學習數學知識。
數學家數學知識點總結篇八
整數零負整數有限小數或無限循環小數。
正分數。
分數。
負分數小數。
1.正無理數。
無理數無限不循環小數。
負無理數。
2、數軸:規定了(畫數軸時,要注童上述規定的三要素缺一個不可),
實數與數軸上的點是一一對應的。
數軸上任一點對應的數總大于這個點左邊的點對應的數。
3、相反數與倒數;?a(a?0)4、絕對值?|a|??0(a?0)。
5、近似數與有效數字;??a(a?0)?
6、科學記數法。
7、平方根與算術平方根、立方根;
8、非負數的性質:若幾個非負數之和為零,則這幾個數都等于零。
1.無理數:無限不循環小數。
算術平方根定義如果一個非負數x的平方等于a,即x2?a。
那么這個非負數x就叫做a的算術平方根,記為a,
算術平方根為非負數a?0。
叫做a的平方根,記為?a?
正數的立方根是正數???立方根?負數的立方根是負數????0的立方根是0???
定義:如果一個數x的立方等于a,即x3?a,那么這個數x?
就叫做a的立方根,記為3a.?
概念有理數和無理數統稱實數。
絕對值、相反數、倒數的意義同有理數。
實數與數軸上的點是一一對應。
實數的運算法則、運算規律與有理數的運算法則?
運算規律相同。
數學家數學知識點總結篇九
1、直接法:
直接根據題設條件構建關于參數的不等式,再通過解不等式確定參數范圍。
2、分離參數法:
先將參數分離,轉化成求函數值域問題加以解決。
3、數形結合法:
先對解析式變形,在同一平面直角坐標系中,畫出函數的圖象,然后數形結合求解。
數學家數學知識點總結篇十
任何正整數都是0的約數。
4的正約數有:1、2、4。
6的正約數有:1、2、3、6。
10的正約數有:1、2、5、10。
12的正約數有:1、2、3、4、6、12。
15的正約數有:1、3、5、15。
18的正約數有:1、2、3、6、9、18。
20的正約數有:1、2、4、5、10、20。
注意:一個數的約數必然包括1及其本身。
2、約數的個數怎么求。
要用到約數個數定理。
需要指出來的是,a1,a2,a3……都是a的質因數。r1,r2,r3……是a1,a2,a3……的指數。
比如,360=2^3_3^2_5(^是次方的意思)。
所以個數是(3+1)_(2+1)_(1+1)=24個。
數學家數學知識點總結篇十一
1、靜態的觀點有兩個平行的平面,其他的面是曲面;動態的觀點:矩形繞其一邊旋轉形成的面圍成的旋轉體,象這樣的旋轉體稱為圓柱。
2、定義:以矩形的一邊所在直線為旋轉軸,其余各邊旋轉而形成的的曲面所圍成的旋轉體叫做圓柱,旋轉軸叫圓柱的軸;垂直于旋轉軸的邊旋轉而成的圓面叫做圓柱的底面;平行于圓柱軸的邊旋轉而成的面叫圓柱的側面,圓柱的側面又稱圓柱的面。無論轉到什么位置,不垂直于軸的邊都叫圓柱側面的母線。
表示:圓柱用表示軸的字母表示。
規定:圓柱和棱柱統稱為柱體。
3、靜態觀點:有一平面,其他的面是曲面;動態的觀點:直角三角形繞其一直角旋轉形成的面圍成的旋轉體,像這樣的旋轉體稱為圓錐。
4、定義:以直角三角形的一條直角邊所在的直線為旋轉軸,其余兩邊旋轉而形成的面所圍成的旋轉體叫做圓錐。旋轉軸叫圓錐的軸;垂直于旋轉軸的邊旋轉而成的圓面成為圓錐的底面;不垂直于旋轉軸的邊旋轉而成的曲面叫圓錐的側面,圓錐的側面又稱圓錐的面,無論旋轉到什么位置,這條邊都叫做圓錐側面的母線。
表示:圓錐用表示軸的字母表示。
規定:圓錐和棱錐統稱為錐體。
5、定義:以半直角梯形垂直于底邊的腰所在的直線為旋轉軸,其余各邊旋轉而形成的曲面所圍成的幾何體叫圓臺。還可以看成用平行于圓錐底面的平面截這個圓錐,截面于底面之間的部分。旋轉軸叫圓臺的軸。垂直于旋轉軸的邊旋轉而形成的圓面稱為圓臺的底面;不垂直于旋轉軸的邊旋轉而成的曲面叫做圓臺的側面,無論轉到什么位置,這條邊都叫圓臺側面的母線。
表示:圓臺用表示軸的字母表示。
規定:圓臺和棱臺統稱為臺體。
6、定義:以半圓的直徑所在的直線為旋轉軸,將半圓旋轉一周所形成的曲面稱為球面,球面所圍成的旋轉體稱為球體,簡稱為球。半圓的圓心稱為球心,連接球面上任意一點與球心的線段稱為球的半徑,連接球面上兩點并且過球心的線段稱為球的直徑。
表示:用表示球心的字母表示。
簡單組合體的結構:
1、`由簡單幾何體組合而成的幾何體叫簡單組合體。現實世界中,我們看到的物體大多由具有柱、錐、臺、球等幾何結構特征的物體組合而成。如教材圖1.1-11的前兩個圖形,他們是多面體與多面體的組合體;1.1-11的后兩個圖形,他們是由一個多面體從中截去一個或多個多面體得到的組合體。
2、常見的組合體有三種:多面體與多面體的組合;多面體與旋轉體的組合;旋轉體與旋轉體的組合。其基本形式實質上有兩種:一種是由簡單幾何體拼接而成的簡單組合體;另一種是由簡單簡單幾何體截去或挖去一部分而成的簡單組合體。
將本文的word文檔下載到電腦,方便收藏和打印。
數學家數學知識點總結篇十二
2、子集;。
3、補集;。
4、交集;。
5、并集;。
6、邏輯連結詞;。
7、四種命題;。
8、充要條件。
1、映射;。
2、函數;。
3、函數的單調性;。
4、反函數;。
5、互為反函數的函數圖象間的關系;。
6、指數概念的擴充;。
7、有理指數冪的運算;。
8、指數函數;。
9、對數;。
10、對數的運算性質;。
11、對數函數。
12、函數的應用舉例。
1、數列;。
2、等差數列及其通項公式;。
3、等差數列前n項和公式;。
4、等比數列及其通頂公式;。
5、等比數列前n項和公式。
1、角的概念的推廣;。
2、弧度制;。
3、任意角的三角函數;。
4、單位圓中的三角函數線;。
5、同角三角函數的基本關系式;。
6、正弦、余弦的誘導公式;。
7、兩角和與差的正弦、余弦、正切;。
8、二倍角的正弦、余弦、正切;。
9、正弦函數、余弦函數的圖象和性質;。
10、周期函數;。
11、函數的奇偶性;。
12、函數的圖象;。
13、正切函數的圖象和性質;。
14、已知三角函數值求角;。
15、正弦定理;。
16、余弦定理;。
17、斜三角形解法舉例。
1、向量;。
2、向量的加法與減法;。
3、實數與向量的積;。
4、平面向量的坐標表示;。
5、線段的定比分點;。
6、平面向量的數量積;。
7、平面兩點間的距離;。
8、平移。
1、不等式;。
2、不等式的基本性質;。
3、不等式的證明;。
4、不等式的解法;。
5、含絕對值的不等式。
1、直線的.傾斜角和斜率;。
2、直線方程的點斜式和兩點式;。
3、直線方程的一般式;。
4、兩條直線平行與垂直的條件;。
5、兩條直線的交角;。
6、點到直線的距離;。
7、用二元一次不等式表示平面區域;。
8、簡單線性規劃問題;。
9、曲線與方程的概念;。
10、由已知條件列出曲線方程;。
11、圓的標準方程和一般方程;。
12、圓的參數方程。
1、橢圓及其標準方程;。
2、橢圓的簡單幾何性質;。
3、橢圓的參數方程;。
4、雙曲線及其標準方程;。
5、雙曲線的簡單幾何性質;。
6、拋物線及其標準方程;。
7、拋物線的簡單幾何性質。
1、平面及基本性質;。
2、平面圖形直觀圖的畫法;。
3、平面直線;。
4、直線和平面平行的判定與性質;。
5、直線和平面垂直的判定與性質;。
6、三垂線定理及其逆定理;。
7、兩個平面的位置關系;。
8、空間向量及其加法、減法與數乘;。
9、空間向量的坐標表示;。
10、空間向量的數量積;。
11、直線的方向向量;。
12、異面直線所成的角;。
13、異面直線的公垂線;。
14、異面直線的距離;。
15、直線和平面垂直的性質;。
16、平面的法向量;。
17、點到平面的距離;。
18、直線和平面所成的角;。
19、向量在平面內的射影;。
20、平面與平面平行的性質;。
21、平行平面間的距離;。
22、二面角及其平面角;。
23、兩個平面垂直的判定和性質;。
24、多面體;。
25、棱柱;。
26、棱錐;。
27、正多面體;。
28、球。
1、分類計數原理與分步計數原理;。
2、排列;。
3、排列數公式;。
4、組合;。
5、組合數公式;。
6、組合數的兩個性質;。
7、二項式定理;。
8、二項展開式的性質。
1、隨機事件的概率;。
2、等可能事件的概率;。
3、互斥事件有一個發生的概率;。
4、相互獨立事件同時發生的概率;。
5、獨立重復試驗。
數學家數學知識點總結篇十三
則有以下五種關系:
1、dr+r兩圓外離;兩圓的圓心距離之和大于兩圓的半徑之和。
2、d=r+r兩圓外切;兩圓的圓心距離之和等于兩圓的半徑之和。
3、d=r—r兩圓內切;兩圓的圓心距離之和等于兩圓的半徑之差。
4、d。
5、d。
1、無公共點,一圓在另一圓之外叫外離,在之內叫內含。
2、有唯一公共點的,一圓在另一圓之外叫外切,在之內叫內切。
3、有兩個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。
數學家數學知識點總結篇十四
1、平面的基本性質:
公理1如果一條直線的兩點在一個平面內,那么這條直線在這個平面內;
公理2過不在一條直線上的三點,有且只有一個平面;
公理3如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線。
2、空間點、直線、平面之間的位置關系:
直線與直線—平行、相交、異面;
直線與平面—平行、相交、直線屬于該平面(線在面內,最易忽視);
平面與平面—平行、相交。
3、異面直線:
平面外一點a與平面一點b的連線和平面內不經過點b的直線是異面直線(判定);
所成的角范圍(0,90)度(平移法,作平行線相交得到夾角或其補角);
兩條直線不是異面直線,則兩條直線平行或相交(反證);
異面直線不同在任何一個平面內。
求異面直線所成的角:平移法,把異面問題轉化為相交直線的夾角
1、直線與平面平行(核心)
定義:直線和平面沒有公共點
判定:不在一個平面內的一條直線和平面內的一條直線平行,則該直線平行于此平面(由線線平行得出)
2、平面與平面平行
定義:兩個平面沒有公共點
判定:一個平面內有兩條相交直線平行于另一個平面,則這兩個平面平行
性質:兩個平面平行,則其中一個平面內的直線平行于另一個平面;如果兩個平行平面同時與第三個平面相交,那么它們的交線平行。
3、常利用三角形中位線、平行四邊形對邊、已知直線作一平面找其交線
1、直線與平面垂直
定義:直線與平面內任意一條直線都垂直
判定:如果一條直線與一個平面內的兩條相交的直線都垂直,則該直線與此平面垂直
性質:垂直于同一直線的兩平面平行
推論:如果在兩條平行直線中,有一條垂直于一個平面,那么另一條也垂直于這個平面
2、平面與平面垂直
定義:兩個平面所成的二面角(從一條直線出發的兩個半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點為端點,在兩個半平面內分別作垂直于棱的兩條射線所成的角)
判定:一個平面過另一個平面的垂線,則這兩個平面垂直
性質:兩個平面垂直,則一個平面內垂直于交線的直線與另一個平面垂直
數學家數學知識點總結篇十五
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經能很好的掌握了吧,希望同學們會考出好成績。
下面是對數學中因式分解內容的知識講解,希望同學們認真學習。