作為一位杰出的教職工,總歸要編寫教案,教案是教學活動的總的組織綱領和行動方案。那么問題來了,教案應該怎么寫?以下我給大家整理了一些優質的教案范文,希望對大家能夠有所幫助。
必修二余弦定理教案篇一
一、教材分析
《余弦定理》選自人教a版高中數學必修五第一章第一節第一課時。本節課的主要教學內容是余弦定理的內容及證明,以及運用余弦定理解決“兩邊一夾角”“三邊”的解三角形問題。
余弦定理的學習有充分的基礎,初中的勾股定理、必修一中的向量知識、上一課時的正弦定理都是本節課內容學習的知識基礎,同時又對本節課的學習提供了一定的方法指導。其次,余弦定理在高中解三角形問題中有著重要的地位,是解決各種解三角形問題的常用方法,余弦定理也經常運用于空間幾何中,所以余弦定理是高中數學學習的一個十分重要的內容。 二、教學目標
知識與技能:1、理解并掌握余弦定理和余弦定理的推論。
2、掌握余弦定理的推導、證明過程。
3、能運用余弦定理及其推論解決“兩邊一夾角”“三邊”問題。 過程與方法:1、通過從實際問題中抽象出數學問題,培養學生知識的遷移能力。
2、通過直角三角形到一般三角形的過渡,培養學生歸納總結能力。3、通過余弦定理推導證明的過程,培養學生運用所學知識解決實際問題的能力。
情感態度與價值觀:1、在交流合作的過程中增強合作探究、團結協作精神,體驗 解決問題的成功喜悅。
2、感受數學一般規律的美感,培養數學學習的興趣。 三、教學重難點
重點:余弦定理及其推論和余弦定理的運用。
難點:余弦定理的發現和推導過程以及多解情況的判斷。
四、教學用具
普通教學工具、多媒體工具 (以上均為命題教學的準備)
必修二余弦定理教案篇二
《余弦定理》選自人教a版高中數學必修五第一章第一節第一課時。本節課的主要教學內容是余弦定理的內容及證明,以及運用余弦定理解決“兩邊一夾角”“三邊”的解三角形問題。
余弦定理的學習有充分的基礎,初中的勾股定理、必修一中的向量知識、上一課時的正弦定理都是本節課內容學習的知識基礎,同時又對本節課的學習提供了一定的方法指導。其次,余弦定理在高中解三角形問題中有著重要的地位,是解決各種解三角形問題的常用方法,余弦定理也經常運用于空間幾何中,所以余弦定理是高中數學學習的一個十分重要的內容。
1、理解并掌握余弦定理和余弦定理的推論。
2、掌握余弦定理的推導、證明過程。
3、能運用余弦定理及其推論解決“兩邊一夾角”“三邊”問題。
1、通過從實際問題中抽象出數學問題,培養學生知識的遷移能力。
2、通過直角三角形到一般三角形的過渡,培養學生歸納總結能力。
3、通過余弦定理推導證明的過程,培養學生運用所學知識解決實際問題的能力。
1、在交流合作的過程中增強合作探究、團結協作精神,體驗 解決問題的成功喜悅。
2、感受數學一般規律的美感,培養數學學習的興趣。
重點:余弦定理及其推論和余弦定理的運用。
難點:余弦定理的發現和推導過程以及多解情況的判斷。
普通教學工具、多媒體工具 (以上均為命題教學的準備)
必修二余弦定理教案篇三
人教版《普通高中課程標準實驗教科書?必修(五)》(第2版)第一章《解三角形》第一單元第二課《余弦定理》。通過利用向量的數量積方法推導余弦定理,正確理解其結構特征和表現形式,解決“邊、角、邊”和“邊、邊、邊”問題,初步體會余弦定理解決“邊、邊、角”,體會方程思想,激發學生探究數學,應用數學的潛能。
本課之前,學生已經學習了三角函數、向量基本知識和正弦定理有關內容,對于三角形中的邊角關系有了較進一步的認識。在此基礎上利用向量方法探求余弦定理,學生已有一定的學習基礎和學習興趣。總體上學生應用數學知識的意識不強,創造力較弱,看待與分析問題不深入,知識的系統性不完善,使得學生在余弦定理推導方法的探求上有一定的難度,在發掘出余弦定理的結構特征、表現形式的數學美時,能夠激發學生熱愛數學的思想感情;從具體問題中抽象出數學的本質,應用方程的思想去審視,解決問題是學生學習的一大難點。
新課程的數學提倡學生動手實踐,自主探索,合作交流,深刻地理解基本結論的本質,體驗數學發現和創造的歷程,力求對現實世界蘊涵的一些數學模式進行思考,作出判斷;同時要求教師從知識的傳授者向課堂的設計者、組織者、引導者、合作者轉化,從課堂的執行者向實施者、探究開發者轉化。本課盡力追求新課程要求,利用師生的互動合作,提高學生的數學思維能力,發展學生的數學應用意識和創新意識,深刻地體會數學思想方法及數學的應用,激發學生探究數學、應用數學知識的潛能。
繼續探索三角形的邊長與角度間的具體量化關系、掌握余弦定理的兩種表現形式,體會向量方法推導余弦定理的思想;通過實踐演算運用余弦定理解決“邊、角、邊”及“邊、邊、邊”問題;深化與細化方程思想,理解余弦定理的本質。通過相關教學知識的聯系性,理解事物間的普遍聯系性。
教學重點是余弦定理的發現過程及定理的應用;教學難點是用向量的數量積推導余弦定理的思路方法及余弦定理在應用求解三角形時的思路。
本課的教學應具有承上啟下的目的。因此在教學設計時既要兼顧前后知識的聯系,又要使學生明確本課學習的重點,將新舊知識逐漸地融為一體,構建比較完整的知識系統。所以在余弦定理的表現方式、結構特征上重加指導,只有當學生正確地理解了余弦定理的本質,才能更好地應用求解問題。本課教學設計力求在型(模型、類型),質(實質、本質),思(思維、思想方法)上達到教學效果。本課之前學生已學習過三角函數,平面幾何,平面向量、解析幾何、正弦定理等與本課緊密聯系的內容,使本課有了較多的處理工具,也使余弦定理的探討有了更加簡潔的工具。因此在本課的教學設計中抓住前后知識的聯系,重視數學思想的教學,加深對數學概念本質的理解,認識數學與實際的聯系,學會應用數學知識和方法解決一些實際問題。學生應用數學的意識不強,創造力不足、看待問題不深入,很大原因在于學生的知識系統不夠完善。因此本課運用聯系的觀點,從多角度看待問題,在提出問題、思考分析問題、解決問題等多方面對學生進行示范引導,將舊知識與新知識進行重組擬合及提高,幫助學生建立自己的良好知識結構。
必修二余弦定理教案篇四
本節知識是職業高中數學教材第五章第九節《解三角形》的內容,與初中學習的勾股定理有密切的聯系,在日常生活和工業生產中也時常有解三角形的問題,在實際測量問題及航海問題中都有著廣泛的用,而且解三角形和三角函數聯系在高考當中也時常考一些解答題。并且在探索建立余弦定理時還用到向量法,坐標法等數學方法,同時還用到了數形結合,方程等數學思想。因此,余弦定理的知識非常重要。特別是在三角形中的求角問題中作用更大。做為職業高中的學生必須學好學透這節知識
根據上述教材內容分析,考慮到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:
①理解掌握余弦定理,能正確使用定理
②培養學生教形結合分析問題的能力
③培養學生嚴謹的推理思維和良好的審美能力。
教學重點:定理的探究及應用
教學難點:定理的探究及理解
對于職業高中的高一學生,雖然知識經驗并不豐富,但他們的智利發展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,所以我在授課時注重引導、啟發和探討以符合這類學生的心理發展特點,從而促進思維能力的進一步發展。
根據教材的內容和編排的特點,為更有效地突出重點,突破難點,以學生的發展為本,遵照學生的認識規律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想,采用探究式課堂教學模式,即在教學過程中,在教師的啟發引導下,以學生獨立自主和合作交流為前提,以“余弦定理的發現”為基本探究內容,讓學生的思維由問題開始,到發想、探究,定理的推導,并逐步得到深化。突破重點的手段:抓住學生情感的興奮點,激發他們的興趣,鼓勵學生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進。另外,抓知識選擇的切入點,從學生原有的認知水平和所需的知識特點入手,教師在學生主體下給以適當的提示和指導。突破難點的方法:抓住學生的能力線,聯系方法與技能使學生較易證明余弦定理,另外通過例題和練習來突破難點,注重知識的形成過程,突出教學理念的創新。
指導學生掌握“觀察――猜想――證明――應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結合,體現學生的主體地位,增強學生由特殊到一般的數學思維能力,形成了實事求是的科學態度,增強了鍥而不舍的求學精神。
第一:創設情景,大概用2分鐘
第二:實踐探究,形成定理,大約用25分鐘
第三:應用定理,拓展反思,大約用13分鐘
(一)創設情境,布疑激趣
“興趣是最好的老師”,如果一節課有個好的開頭,那就意味著成功了一半,從用正弦定理可解的兩類三角形出發,揭示勾股定理特點,說明正弦定理解三角形不完備,還有用正弦定理不能直接求解的三角形,應怎樣解決呢?需要我們繼續探究,引出課題。
(二)邏輯推理,證明猜想
提出問題,探究問題,形成定理,回顧分析,形成結論,再認識結論,總結用途。變形延伸,培養發散,對比特殊,認知推廣。落實定理,構建定理應用體系。
(三)歸納總結,簡單應用
1.讓學生用文字敘述余弦定理,引導學生發現定理具有對稱和諧美,提升對數學美的享受。
2.回顧余弦定理的內容,討論可以解決哪幾類有關三角形的問題。
(四)講解例題,鞏固定理
1、審題確定條件。
2、明確求解任務。
3、確定使用公式。
4、科學求解過程。
(五)課堂練習,提高鞏固
1、在△abc中,已知下列條件,解三角形。
(1)a=45°,c=30°,c=10cm
(2)a=60°,b=45°,c=20cm
2、在△abc中,已知下列條件,解三角形。
(1)a=20cm,b=11cm,b=30°
(2)c=54cm,b=39cm,c=115°
學生板演,老師巡視,及時發現問題,并解答。
(六)小結反思,提高認識
通過以上的研究過程,同學們主要學到了那些知識和方法?你對此有何體會?
1.用向量證明了余弦定理,體現了數形結合的數學思想。
2.兩種表達。
3.兩類問題。
(七)思維拓展,自主探究
利用余弦定理判斷三角形形狀,即余弦定理的推論。
必修二余弦定理教案篇五
(一)教材地位與作用
《余弦定理》是必修5第一章《解三角形》的第一節內容,前面已經學習了正弦定理以及必修4中的任意角、誘導公式以及恒等變換,為后面學習三角函數奠定了基礎,因此本節課有承上啟下的作用。本節課是解決有關斜三角形問題以及應用問題的一個重要定理,它將三角形的邊和角有機地聯系起來,實現了"邊"與"角"的互化,從而使"三角"與"幾何"產生聯系,為求與三角形有關的量提供了理論依據,同時也為判斷三角形形狀,證明三角形中的有關等式提供了重要依據。
(二)教學目標
根據上述教材內容分析以及新課程標準,考慮到學生已有的認知結構,心理特征及原有知識水平,我將本課的教學目標定為:
⒈知識與技能:
掌握余弦定理的內容及公式;能初步運用余弦定理解決一些斜三角形
⒉過程與方法:
在探究學習的過程中,認識到余弦定理可以解決某些與測量和幾何計算有關的實際問題,幫助學生提高運用有關知識解決實際問題的能力。
⒊情感、態度與價值觀:
培養學生的探索精神和創新意識;在運用余弦定理的過程中,讓學生逐步養成實事求是,扎實嚴謹的科學態度,學習用數學的思維方式解決問題,認識世界;通過本節的運用實踐,體會數學的科學價值,應用價值;
(三)本節課的重難點
教學重點是:運用余弦定理探求任意三角形的邊角關系,解決與之有關的計算問題,運用余弦定理解決一些與測量以及幾何計算有關的實際問題。
教學難點是:靈活運用余弦定理解決相關的實際問題。
教學關鍵是:熟練掌握并靈活應用余弦定理解決相關的實際問題。
下面為了講清重點、難點,使學生能達到本節設定的教學目標,我再從教法和學法上談談:
從知識層面上看,高中學生通過前一節課的學習已經掌握了余弦定理及其推導過程;從能力層面上看,學生初步掌握運用余弦定理解決一些簡單的'斜三角形問題的技能;從情感層面上看,學生對教學新內容的學習有相當的興趣和積極性,但在探究問題的能力以及合作交流等方面的發展不夠均衡。
貫徹的指導思想是把"學習的主動權還給學生",倡導"自主、合作、探究"的學習方式。讓學生自主探索學會分析問題,解決問題。
下面為了完成教學目標,解決教學重點,突破教學難點,課堂教學我準備按以下五個環節展開:
環節⒈復習引入
由于本節課是余弦定理的第一課時,因此先領著學生回顧復習上節課所學的內容,采用提問的方式,找同學回答余弦定理的內容及公式,并且讓學生回想公式推導的思路和方法,這樣一來可以檢驗學生對所學知識的掌握情況,二來也為新課作準備。
環節⒉應用舉例
在本環節中,我將給出兩道典型例題
△abc的頂點為a(6,5),b(-2,8)和c(4,1),求(精確到)。
已知三點a(1,3),b(-2,2),c(0,-3),求△abc各內角的大小。
通過利用余弦定理解斜三角形的思想,來對這兩道例題進行分析和講解;本環節的目的在于通過典型例題的解答,鞏固學生所學的知識,進一步深化對于余弦定理的認識和理解,提高學生的理解能力和解題計算能力。
環節⒊練習反饋
練習b組題,1、2、3;習題1-1a組,1、2、3
在本環節中,我將找學生到黑板做題,期間巡視下面同學的做題情況,加以糾正和講解;通過解決書后練習題,鞏固學生當堂所學知識,同時教師也可以及時了解學生的掌握情況,以便及時調整自己的教學步調。
環節⒋歸納小結
在本環節中,我將采用師生共同總結-交流-完善的方式,首先讓學生自己總結出余弦定理可以解決哪些類型的問題,再由師生共同完善,總結出余弦定理可以解決的兩類問題:⑴已知三邊,求各角;⑵已知兩邊和它們的夾角,求第三邊和其他兩個角。本環節的目的在于引導學生學會自己總結;讓學生進一步體會知識的形成、發展、完善的過程。
環節⒌課后作業
必做題:習題1-1a組,6、7;習題1-1b組,2、3、4、5
選做題:習題1-1b組7,8,9.
基于因材施教的原則,在根據不同層次的學生情況,把作業分為必做題和選做題,必做題要求所有學生全部完成,選做題要求學有余力的學生完成,使不同程度的學生都有所提高。本環節的目的是讓學生進一步鞏固和深化所學的知識,培養學生的自主探究能力。
在本節課中我將采用提綱式的板書設計,因為提綱式-條理清楚、從屬關系分明,給人以清晰完整的印象,便于學生對教材內容和知識體系的理解和記憶。
必修二余弦定理教案篇六
(一)教材地位與作用
《余弦定理》是必修5第一章《解三角形》的第一節內容,前面已經學習了正弦定理以及必修4中的任意角、誘導公式以及恒等變換,為后面學習三角函數奠定了基礎,因此本節課有承上啟下的作用。本節課是解決有關斜三角形問題以及應用問題的一個重要定理,它將三角形的邊和角有機地聯系起來,實現了"邊"與"角"的互化,從而使"三角"與"幾何"產生聯系,為求與三角形有關的量提供了理論依據,同時也為判斷三角形形狀,證明三角形中的有關等式提供了重要依據。
(二)教學目標
根據上述教材內容分析以及新課程標準,考慮到學生已有的認知結構,心理特征及原有知識水平,我將本課的教學目標定為:
⒈知識與技能:
掌握余弦定理的內容及公式;能初步運用余弦定理解決一些斜三角形
⒉過程與方法:
在探究學習的過程中,認識到余弦定理可以解決某些與測量和幾何計算有關的實際問題,幫助學生提高運用有關知識解決實際問題的能力。
⒊情感、態度與價值觀:
培養學生的探索精神和創新意識;在運用余弦定理的過程中,讓學生逐步養成實事求是,扎實嚴謹的科學態度,學習用數學的思維方式解決問題,認識世界;通過本節的運用實踐,體會數學的科學價值,應用價值;
(三)本節課的重難點
教學重點是:運用余弦定理探求任意三角形的邊角關系,解決與之有關的計算問題,運用余弦定理解決一些與測量以及幾何計算有關的實際問題。
教學難點是:靈活運用余弦定理解決相關的實際問題。
教學關鍵是:熟練掌握并靈活應用余弦定理解決相關的實際問題。
下面為了講清重點、難點,使學生能達到本節設定的教學目標,我再從教法和學法上談談:
從知識層面上看,高中學生通過前一節課的學習已經掌握了余弦定理及其推導過程;從能力層面上看,學生初步掌握運用余弦定理解決一些簡單的斜三角形問題的技能;從情感層面上看,學生對教學新內容的學習有相當的興趣和積極性,但在探究問題的能力以及合作交流等方面的發展不夠均衡。
貫徹的指導思想是把"學習的主動權還給學生",倡導"自主、合作、探究"的學習方式。讓學生自主探索學會分析問題,解決問題。
下面為了完成教學目標,解決教學重點,突破教學難點,課堂教學我準備按以下五個環節展開:
環節⒈復習引入
由于本節課是余弦定理的第一課時,因此先領著學生回顧復習上節課所學的內容,采用提問的方式,找同學回答余弦定理的內容及公式,并且讓學生回想公式推導的思路和方法,這樣一來可以檢驗學生對所學知識的掌握情況,二來也為新課作準備。
環節⒉應用舉例
在本環節中,我將給出兩道典型例題
△abc的。頂點為a(6,5),b(-2,8)和c(4,1),求(精確到)。
已知三點a(1,3),b(-2,2),c(0,-3),求△abc各內角的大小。
通過利用余弦定理解斜三角形的思想,來對這兩道例題進行分析和講解;本環節的目的在于通過典型例題的解答,鞏固學生所學的知識,進一步深化對于余弦定理的認識和理解,提高學生的理解能力和解題計算能力。
環節⒊練習反饋
練習b組題,1、2、3;習題1-1a組,1、2、3
在本環節中,我將找學生到黑板做題,期間巡視下面同學的做題情況,加以糾正和講解;通過解決書后練習題,鞏固學生當堂所學知識,同時教師也可以及時了解學生的掌握情況,以便及時調整自己的教學步調。
環節⒋歸納小結
在本環節中,我將采用師生共同總結-交流-完善的方式,首先讓學生自己總結出余弦定理可以解決哪些類型的問題,再由師生共同完善,總結出余弦定理可以解決的兩類問題:⑴已知三邊,求各角;⑵已知兩邊和它們的夾角,求第三邊和其他兩個角。本環節的目的在于引導學生學會自己總結;讓學生進一步體會知識的形成、發展、完善的過程。
環節⒌課后作業
必做題:習題1-1a組,6、7;習題1-1b組,2、3、4、5
選做題:習題1-1b組7,8,9.
基于因材施教的原則,在根據不同層次的學生情況,把作業分為必做題和選做題,必做題要求所有學生全部完成,選做題要求學有余力的學生完成,使不同程度的學生都有所提高。本環節的目的是讓學生進一步鞏固和深化所學的知識,培養學生的自主探究能力。
在本節課中我將采用提綱式的板書設計,因為提綱式-條理清楚、從屬關系分明,給人以清晰完整的印象,便于學生對教材內容和知識體系的理解和記憶。
必修二余弦定理教案篇七
今天我說課的內容是余弦定理,本節內容共分3課時,今天我將就第1課時的余弦定理的證明與簡單應用進行說課。下面我分別從教材分析。教學目標的確定。教學方法的選擇和教學過程的設計這四個方面來闡述我對這節課的教學設想。
本節內容是江蘇教育出版社出版的普通高中課程標準實驗教科書《數學》必修五的第一章第2節,在此之前學生已經學習過了勾股定理。平面向量、正弦定理等相關知識,這為過渡到本節內容的學習起著鋪墊作用。本節內容實質是學生已經學習的勾股定理的延伸和推廣,它描述了三角形重要的邊角關系,將三角形的“邊”與“角”有機的聯系起來,實現邊角關系的互化,為解決斜三角形中的邊角求解問題提供了一個重要的工具,同時也為在日后學習中判斷三角形形狀,證明三角形有關的等式與不等式提供了重要的依據。
在本節課中教學重點是余弦定理的內容和公式的掌握,余弦定理在三角形邊角計算中的運用;教學難點是余弦定理的發現及證明;教學關鍵是余弦定理在三角形邊角計算中的運用。
基于以上對教材的認識,根據數學課程標準的“學生是數學學習的主人,教師是數學學習的組織者。引導者與合作者”這一基本理念,考慮到學生已有的認知結構和心理特征,我認為本節課的教學目標有:
1、知識與技能:熟練掌握余弦定理的內容及公式,能初步應用余弦定理解決一些有關三角形邊角計算的問題;
2、過程與方法:掌握余弦定理的兩種證明方法,通過探究余弦定理的過程學會分析問題從特殊到一般的過程與方法,提高運用已有知識分析、解決問題的能力;
3、情感態度與價值觀:在探究余弦定理的過程中培養學生探索精神和創新意識,形成嚴謹的數學思維方式,培養用數學觀點解決問題的能力和意識、
基于本節課是屬于新授課中的數學命題教學,根據《學記》中啟發誘導的思想和布魯納的發現學習理論,我將主要采用“啟發式教學”和“探究性教學”的教學方法即從一個實際問題出發,發現無法使用剛學習的正弦定理解決,造成學生在認知上的沖突,產生疑惑,從而激發學生的探索新知的欲望,之后進一步啟發誘導學生分析,綜合,概括從而得出原理解決問題,最終形成概念,獲得方法,培養能力。
在教學中利用計算機多媒體來輔助教學,充分發揮其快捷、生動、形象的特點。
為達到本節課的教學目標、突出重點、突破難點,在教材分析、確定教學目標和合理選擇教法與學法的基礎上,我把教學過程設計為以下四個階段:創設情境、引入課題;探索研究、構建新知;例題講解、鞏固練習;課堂小結,布置作業。具體過程如下:
1、創設情境,引入課題
利用多媒體引出如下問題:
a地和b地之間隔著一個水塘現選擇一地點c,可以測得的大小及,求a、b兩地之間的距離c。
【設計意圖】由于學生剛學過正弦定理,一定會采用剛學的知識解題,但由于無法找到一組已知的邊及其所對角,從而產生疑惑,激發學生探索欲望。
2、探索研究、構建新知
(1)由于初中接觸的是解直角三角形的問題,所以我將先帶領學生從特殊情況為直角三角形()時考慮。此時使用勾股定理,得。
(2)從直角三角形這一特殊情況出發,引導學生在一般三角形中構造直角即作邊的高,從而在構造的直角三角形中利用勾股定理列出邊之間的等式關系、
(3)考慮到我們所作的圖為銳角三角形,討論上述結論能否推廣到在為鈍角三角形()中。
通過解決問題可以得到在任意三角形中都有,之后讓同學們類比出……這樣我就完成了對余弦定理的引入,之后總結給出余弦定理的內容及公式表示。
【設計意圖】通過創設情景、引導學生探究出余弦定理這一數學體驗,既可以培養學生分析問題的能力,也可以加深學生對余弦定理的認識、
在學生已學習了向量的基礎上,考慮到新課改中要求使用新工具、新方法,我會引導同學類比向量法證明正弦定理的過程嘗試使用向量的方法證明余弦定理、之后引導學生對余弦定理公式進行變形,用三邊值來表示角的余弦值,給出余弦定理的第二種表示形式,這樣就完成了新知的構建。
根據余弦定理的兩種形式,我們可以利用余弦定理解決以下兩類解斜三角形的問題:
(1)已知三邊,求三個角;
(2)已知三角形兩邊及其夾角,求第三邊和其他兩個角。
3、例題講解、鞏固練習
本階段的教學主要是通過對例題和練習的思考交流、分析講解以及反思小結,使學生初步掌握使用余弦定理解決問題的方法。其中例題先以學生自己思考解題為主,教師點評后再規范解題步驟及板書,課堂練習請同學們自主完成,并請同學上黑板板書,從而鞏固余弦定理的運用。
例題講解:
例1在中,
(1)已知,求;
(2)已知,求。
【設計意圖】例題1分別是通過已知三角形兩邊及其夾角求第三邊,已知三角形三邊求其夾角,這樣余弦定理的兩個形式分別得到了運用,進而鞏固了學生對余弦定理的運用。
例2對于例題1(2),求的大小。
【設計意圖】已經求出了的度數,學生可能會有兩種解法:運用正弦定理或運用余弦定理,比較正弦定理和余弦定理,發現使用余弦定理求解角的問題可以避免解的取舍問題。
例3使用余弦定理證明:在中,當為銳角時;當為鈍角時,
【設計意圖】例3通過對和的比較,體現了“余弦定理是勾股定理的推廣”這一思想,進一步加深了對余弦定理的認識和理解。
課堂練習:
練習1在中,
(1)已知,求;
(2)已知,求。
【設計意圖】檢驗學生是否掌握余弦定理的兩個形式,鞏固學生對余弦定理的運用。
練習2若三條線段長分別為5,6,7,則用這三條線段()。
a、能組成直角三角形
b、能組成銳角三角形
c、能組成鈍角三角形
d、不能組成三角形
【設計意圖】與例題3相呼應。
練習3在中,已知,試求的大小。
【設計意圖】要求靈活使用公式,對公式進行變形。
4、課堂小結,布置作業
先請同學對本節課所學內容進行小結,教師再對以下三個方面進行總結:
(1)余弦定理的內容和公式;
(2)余弦定理實質上是勾股定理的推廣;
(3)余弦定理的可以解決的兩類解斜三角形的問題。
通過師生的共同小結,發揮學生的主體作用,有利于學生鞏固所學知識,也能培養學生的歸納和概括能力。
布置作業
必做題:習題1、2、1、2、3、5、6;
選做題:習題1、2、12、13。
【設計意圖】
作業分為必做題和選做題、針對學生素質的差異進行分層訓練,既使學生掌握基礎知識,又使學有余力的學生有所提高。
各位老師,以上所說只是我預設的一種方案,但課堂是千變萬化的,會隨著學生和教師的臨時發揮而隨機生成。預設效果如何,最終還有待于課堂教學實踐的檢驗。
本說課一定存在諸多不足,懇請老師提出寶貴意見,謝謝。
必修二余弦定理教案篇八
本節內容是江蘇教育出版社出版的普通高中課程標準實驗教科書《數學》必修五的第一章第2節,在此之前學生已經學習過了勾股定理。平面向量、正弦定理等相關知識,這為過渡到本節內容的學習起著鋪墊作用。本節內容實質是學生已經學習的勾股定理的延伸和推廣,它描述了三角形重要的邊角關系,將三角形的“邊”與“角”有機的聯系起來,實現邊角關系的互化,為解決斜三角形中的邊角求解問題提供了一個重要的工具,同時也為在日后學習中判斷三角形形狀,證明三角形有關的等式與不等式提供了重要的依據。
在本節課中教學重點是余弦定理的內容和公式的掌握,余弦定理在三角形邊角計算中的運用;教學難點是余弦定理的發現及證明;教學關鍵是余弦定理在三角形邊角計算中的運用。
基于以上對教材的認識,根據數學課程標準的“學生是數學學習的主人,教師是數學學習的組織者。引導者與合作者”這一基本理念,考慮到學生已有的認知結構和心理特征,我認為本節課的教學目標有:
1、知識與技能:熟練掌握余弦定理的內容及公式,能初步應用余弦定理解決一些有關三角形邊角計算的問題;
2、過程與方法:掌握余弦定理的兩種證明方法,通過探究余弦定理的過程學會分析問題從特殊到一般的過程與方法,提高運用已有知識分析、解決問題的能力;
3、情感態度與價值觀:在探究余弦定理的過程中培養學生探索精神和創新意識,形成嚴謹的數學思維方式,培養用數學觀點解決問題的能力和意識、
基于本節課是屬于新授課中的數學命題教學,根據《學記》中啟發誘導的思想和布魯納的發現學習理論,我將主要采用“啟發式教學”和“探究性教學”的教學方法即從一個實際問題出發,發現無法使用剛學習的正弦定理解決,造成學生在認知上的沖突,產生疑惑,從而激發學生的探索新知的欲望,之后進一步啟發誘導學生分析,綜合,概括從而得出原理解決問題,最終形成概念,獲得方法,培養能力。
在教學中利用計算機多媒體來輔助教學,充分發揮其快捷、生動、形象的特點。
為達到本節課的教學目標、突出重點、突破難點,在教材分析、確定教學目標和合理選擇教法與學法的基礎上,我把教學過程設計為以下四個階段:創設情境、引入課題;探索研究、構建新知;例題講解、鞏固練習;課堂小結,布置作業。具體過程如下:
1、創設情境,引入課題
利用多媒體引出如下問題:
a地和b地之間隔著一個水塘現選擇一地點c,可以測得的大小及,求a、b兩地之間的距離c。
【設計意圖】由于學生剛學過正弦定理,一定會采用剛學的知識解題,但由于無法找到一組已知的邊及其所對角,從而產生疑惑,激發學生探索欲望。
2、探索研究、構建新知
(1)由于初中接觸的是解直角三角形的問題,所以我將先帶領學生從特殊情況為直角三角形( )時考慮。此時使用勾股定理,得。
(2)從直角三角形這一特殊情況出發,引導學生在一般三角形中構造直角即作邊的高,從而在構造的直角三角形中利用勾股定理列出邊之間的等式關系、
(3)考慮到我們所作的圖為銳角三角形,討論上述結論能否推廣到在為鈍角三角形( )中。
通過解決問題可以得到在任意三角形中都有,之后讓同學們類比出……這樣我就完成了對余弦定理的引入,之后總結給出余弦定理的內容及公式表示。
【設計意圖】通過創設情景、引導學生探究出余弦定理這一數學體驗,既可以培養學生分析問題的能力,也可以加深 學生對余弦定理的認識、
在學生已學習了向量的基礎上,考慮到新課改中要求使用新工具、新方法,我會引導同學類比向量法證明正弦定理的過程嘗試使用向量的方法證明余弦定理、之后引導學生對余弦定理公式進行變形,用三邊值來表示角的余弦值,給出余弦定理的第二種表示形式,這樣就完成了新知的構建。
根據余弦定理的兩種形式,我們可以利用余弦定理解決以下兩類解斜三角形的問題:
(1)已知三邊,求三個角;
(2)已知三角形兩邊及其夾角,求第三邊和其他兩個角。
3、例題講解、鞏固練習
本階段的教學主要是通過對例題和練習的思考交流、分析講解以及反思小結,使學生初步掌握使用余弦定理解決問題的方法。其中例題先以學生自己思考解題為主,教師點評后再規范解題步驟及板書,課堂練習請同學們自主完成,并請同學上黑板板書,從而鞏固余弦定理的運用。
例題講解:
例1在中,
(1)已知,求;
(2)已知,求。
【設計意圖】例題1分別是通過已知三角形兩邊及其夾角求第三邊,已知三角形三邊求其夾角,這樣余弦定理的兩個形式分別得到了運用,進而鞏固了學生對余弦定理的運用。
例2對于例題1(2),求的大小。
【設計意圖】已經求出了的度數,學生可能會有兩種解法:運用正弦定理或運用余弦定理,比較正弦定理和余弦定理,發現使用余弦定理求解角的問題可以避免解的取舍問題。
例3使用余弦定理證明:在中,當為銳角時;當為鈍角時,
【設計意圖】例3通過對和的比較,體現了“余弦定理是勾股定理的推廣”這一思想,進一步加深了對余弦定理的認識和理解。
課堂練習:
練習1在中,
(1)已知,求;
(2)已知,求。
【設計意圖】檢驗學生是否掌握余弦定理的兩個形式,鞏固學生對余弦定理的運用。
練習2若三條線段長分別為5,6,7,則用這三條線段()。
a、能組成直角三角形
b、能組成銳角三角形
c、能組成鈍角三角形
d、不能組成三角形
【設計意圖】與例題3相呼應。
練習3在中,已知,試求的大小。
【設計意圖】要求靈活使用公式,對公式進行變形。
4、課堂小結,布置作業
先請同學對本節課所學內容進行小結,教師再對以下三個方面進行總結:
(1)余弦定理的內容和公式;
(2)余弦定理實質上是勾股定理的推廣;
(3)余弦定理的可以解決的兩類解斜三角形的問題。
通過師生的共同小結,發揮學生的主體作用,有利于學生鞏固所學知識,也能培養學生的歸納和概括能力。
布置作業
必做題:習題1、2、1、2、3、5、6;
選做題:習題1、2、12、13。
作業分為必做題和選做題、針對學生素質的差異進行分層訓練,既使學生掌握基礎知識,又使學有余力的學生有所提高。
各位老師,以上所說只是我預設的一種方案,但課堂是千變萬化的,會隨著學生和教師的臨時發揮而隨機生成。預設效果如何,最終還有待于課堂教學實踐的檢驗。
本說課一定存在諸多不足,懇請老師提出寶貴意見,謝謝。