91夜夜人人揉人人捏人人添-91一区二区三区四区五区-91伊人久久大香线蕉-91在线电影-免费a网址-免费v片网站

當前位置:網站首頁 >> 作文 >> 數學《勾股定理》教學反思與改進(精選11篇)

數學《勾股定理》教學反思與改進(精選11篇)

格式:DOC 上傳日期:2024-03-20 20:16:07
數學《勾股定理》教學反思與改進(精選11篇)
時間:2024-03-20 20:16:07     小編:zdfb

每個人都曾試圖在平淡的學習、工作和生活中寫一篇文章。寫作是培養人的觀察、聯想、想象、思維和記憶的重要手段。范文書寫有哪些要求呢?我們怎樣才能寫好一篇范文呢?這里我整理了一些優秀的范文,希望對大家有所幫助,下面我們就來了解一下吧。

數學《勾股定理》教學反思與改進篇一

通過欣賞xxxx年在我國北京召開的國際數學家大會的會徽圖案,引出“趙爽弦圖”,讓學生了解我國古代輝煌的數學成就,引入課題。

接下來,讓學生欣賞傳說故事:相傳2500年前,畢達格拉斯在朋友家做客時,發現朋友家用磚鋪成的地面中反映了直角三角形三邊的某種數量關系。通過故事使學生明白:科學家的偉大成就多數都是在看似平淡無奇的現象中發現和研究出來的;生活中處處有數學,我們應該學會觀察、思考,將學習與生活緊密結合起來。

這樣,一方面激發學生的求知欲望,另一方面,也對學生進行了學習方法指導和解決問題能力的培養。

通過對地板圖形中的等腰直角三角形到一般直角三角形中三邊關系的探究,讓同學們體驗由特殊到一般的探究過程,學習這種研究方法。

在這一過程中,學生充分利用學具去嘗試解決,力求讓學生自己探索,先在小組內交流,然后在全班交流,盡量學習更多的方法。

先了解趙爽的證明思路,然后讓學生利用學具自己剪拼,并利用圖形進行證明。

由于難度比較大,組織學生開展小組合作學習。教師要巡回輔導,給予學生必要的幫助。

一是讓學生自己回顧總結本節的收獲。(當然多數為具體的知識和方法)。二是教師要引導學生學習科學家敏銳的觀察力和勤于思考的作風,不斷提高自己的數學素養,適時對大家進行思想教育。

主要練習勾股定理的其它證明方法。

請你利用網絡資源,收集有關勾股定理的證明方法來進行學習。寫出有關勾股定理知識的小論文。一個月過去了,我已忘記了這一項特殊的作業,但部分學生卻寫出了出乎意料的小論文。

通過這節課的兩種不同的上法,以及學生的不同表現與收獲,讓我更深刻地認識到:

(1)新課改理念只有全面滲透到教育教學工作中,與平時工作緊密結合,才能夠促進學生的全面發展;

(2)教師要充分利用課堂內容為整體課程目標服務,不要僅限于本節課的知識目標與要求,就知識“教”知識,而要通過知識的學習獲得學習這些知識的方法,同時,還要充分利用課堂對學生進行情感態度價值觀的教育,真正讓教材成為教育學生的素材,而不是學科教學的全部;

(3)要相信學生的能力,為學生創造自我學習和創造的機會(如布置開放性的學習任務:數學實踐活動、研究學習、寫小論文等)。

我相信:只要堅持不懈地這樣去做,不但能很好地實施新課改,實現教育的本來目標,而且也一定能讓學生“考出”好的成績;不過,這樣教師一定不會輕松。

數學《勾股定理》教學反思與改進篇二

根據學生的認知結構與教材地位,為了達到本節課的教學目標,我設計了以下幾個環節:

1.創設情境,提出猜想讓學生判斷兩位同學的畫法是否都能得到斜邊為10cm的直角三角形,通過對不同畫法的探究,溫故知新,為用構造全等三角形的方法證明勾股定理的逆定理做好鋪墊.同時,引導學生從特殊到一般提出猜想。

2.證明猜想,得出新知。由于有前一環節的鋪墊,通過啟發、引導、討論,讓學生體會用構造全等三角形的方法證明問題的思想,突破定理證明這一難點,并適時出示課題。

3.應用訓練,鞏固新知為了鞏固新知,靈活運用所學知識解決相應問題,提高學生的分析解題能力,我設計了三個層次的問題,以達到教學目標.第一層次是讓學生直接運用定理判斷三角形是否是直角三角形,掌握定理基本運用;第二層次是強調已知三角形三邊長或三邊關系,就有意識的判斷三角形是否是直角三角形,這樣既鞏固了勾股定理的逆定理的應用,又為下一個層次做好了鋪墊;第三層次是靈活運用勾股定理與逆定理解決圖形面積的計算問題.根據學生原有的認知結構,讓學生更好地體會分割的思想.設計的題型前后呼應,使知識有序推進,有助于學生的理解和掌握;讓學生通過合作、交流、反思、感悟的過程,激發學生探究新知的興趣,感受探索、合作的樂趣,并從中獲得成功的體驗.真正體現學生是學習的主人.。

4.歸納小結,形成體系讓學生交流學習的收獲、課堂經歷的感受和對數學思想方法的感悟體會等.幫助學生內化新知,優化學生的認知結構,形成能力,減輕課后負擔。

5.布置作業,課外延伸分層布置作業,目的是讓不同的學生得到不同層次的發展

數學《勾股定理》教學反思與改進篇三

勾股定理是我們這學期教學中一個非常重要的定理,它揭示了直角三角形的三邊之間的數量關系,是典型的數形結合思想的運用,拿著我們初二數學備課組全體老師的精心設計的講學稿,上完課后,反思不少。本節課的設計主要是根據學生的認知結構,“以畫一畫、量一量、算一算、證一證、用一用”為主線軸展開教學的,著實體現了知識的發生、形成和發展的過程,真正地讓學生體會到觀察、歸納、驗證的思想和數形結合的思想,探究出勾股定理的內容,并能做到簡單地應用,主要成功的地方有:

引入20xx年在北京召開的國際數學家大會會標,展示“弦圖”并設疑,迅速集中了學生的注意力,把學生的思緒帶進了特定的學習環境中,激發了全班同學的濃厚興趣和強烈的求知欲,為本節課的成功創造了有利條件。

讓學生動手畫直角三角形,觀察、分析,引導學生自己得出結論,再對結論進行科學的論證,用所得的結論解決數學問題。在課堂上,探索目標明確,體現了教學的重點和難點,充分發揮了學生的主體作用,調動了學生的積極性,培養了學生動手操作的能力,體現了以學生為主體的意識,各環節銜接緊密,學生課堂反應好。

本節課在教學探討的過程中,還滲透著勾股定理的歷史方化背景,激發學生的民族自豪感,促使探索新知識的熱情,整個課堂師生和諧,氣氛好;師生共同探討并驗證定理,鼓勵學生再用其他方法來驗證所得的勾股定理結論。

例:在引入拼圖驗證定理時,學生以前從未接觸過,故在教學中我就多給學生適當指導和鼓勵,盡量做學生的組織者、合作者。

通過這節課,備課、上課之后,感悟點點滴滴,確實還存在著一些遺憾。

①感覺今天這堂課沒有平時上課的氣氛那么濃,部分同學認為是錄像課,不敢拋頭露面,甚至連回答問題的聲音都小了很多,故主動提問的人較少。

②講學稿編設的內容較多,有點欲速則不達的感覺。

數學《勾股定理》教學反思與改進篇四

對于“勾股定理的應用”的反思和小結有以下幾個方面:

基礎題中是一些由正方形和直角三角形拼合而成的圖形(與希臘郵票設計原理相同),其中兩個正方形的面積分別是14和18,求最大的正方形的面積。

分析:由勾股定理結論:直角三角形中兩直角邊的平方和等于斜邊的平方。

其實質即以直角三角形兩直角邊為邊長的兩個正方形面積之和等于以斜邊為邊長的正方形的面積。但學生竟然不知道。其二是課件準備不充分,其中有一道例題的答案是跟著例題同時出現的,再去修改,又浪費了一點時間。其三,用面積法求直角三角形的高,我認為是一個非常簡單的數學問題,但在實際教學中,發現很多學生仍然很難理解,說明我在備課時備學生不充分,沒有站在學生的角度去考慮問題。

這是我上課的最大弱點,我不敢放手讓學生去獨立思考問題,會去重復題目意思,實際上不需要的,可以留時間讓學生去獨立思考。教師是無法代替學生自己的思考的,更不能代替幾十個有差異的學生的思維。課堂上老師放一放,學生得到的更多,老師放多少,學生就有多大的自主發展的空間。但這里的“放多少”是一門藝術,我要好好向老教師學習!

教師要鼓勵學生嘗試并尊重他們不完善的甚至錯誤的意見,經常鼓勵他們大膽說出自己的想法,大膽發表自己的見解,真正體現出學生是數學學習的主人。

啟發學生也是一門藝術,我的課堂上有點啟而不發。課堂上應該多了解學生。

數學《勾股定理》教學反思與改進篇五

勾股定理是中學數學幾個重要定理之一,它揭示了直角三角形三邊之間的數量關系,既是直角三角形性質的拓展,也是后續學習“解直角三角形”的基礎.它緊密聯系了數學中兩個最基本的量——數與形,能夠把形的特征(三角形中一個角是直角)轉化成數量關系(三邊之間滿足a2+b2=c2)堪稱數形結合的典范,在理論上占有重要地位.

八年級學生已具備一定的分析與歸納能力,初步掌握了探索圖形性質的基本方法.但是學生對用割補方法和面積計算證明幾何命題的意識和能力存在障礙,對于如何將圖形與數有機的結合起來還很陌生.

基于以上原因,本節課把學生的探索活動放在首位,一方面要求學生在教師引導下自主探索,合作交流,另一方面要求學生對探究過程中用到的數學思想方法有一定的領悟和認識.從而教給學生探求知識的方法,教會學生獲取知識的本領.并確立了如下的教學目標:

1、學生經歷從數到形再由形到數的轉化過程,經歷探求三個正方形面積間的關系轉化為三邊數量關系的過程。并從過程中讓學生體會數形結合思想,發展將未知轉化為已知,由特殊推測一般的合情推理能力。

2、讓學生經歷圖形分割實驗、計算面積的過程,嘗試從不同的角度尋求解決問題的方法,并能有效地解決問題,積累解決問題的經驗,在過程中養成獨立思考、合作交流的學習習慣;通過解決問題增強自信心,激發學習數學的興趣。

3、通過老師的介紹,體會一種新的證明的方法——面積證法。并在老師的介紹中感受勾股定理的豐富文化內涵,激發生的熱愛祖國悠久文化的思想感情,培養他們的民族自豪感。

教學難點將邊不在格線上的圖形轉化為邊在格線上的圖形,以便于計算圖形面積.

本節課根據學生的認知結構采用“觀察--猜想--歸納--驗證--應用”的教學方法,這一流程體現了知識發生、形成和發展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數形結合的思想.另外,我在探索的過程中補充了一個倒水實驗,(放片子)我個人覺得效果很好,它讓學生深刻的體會到了,不是所有三角形三邊都有a2+b2=c2的關系,只有直角三角形三邊才存在這種關系,并且實驗很具有直觀性,便于學生理解,而且是在學生的學習疲勞期出現,達到了再次點燃學生學習熱情的目的,一舉多得。

除了探究出勾股定理的內容以外,本節課還適時地向學生展現勾股定理的歷史,特別是通過介紹我國古代在勾股定理研究和運用方面的成就,激發學生愛國熱情,培養學生的民族自豪感和探索創新的精神.練習反饋中既有勾股定理的基本應用,還有貼近學生生活的實例,既讓學生感受到學習知識應用于生活的成就感,又使學生深刻了解勾股定理的廣泛應用.讓學生總結本堂課的收獲,從內容,到數學思想方法,到獲取知識的途徑等方面.給學生自由的空間,鼓勵學生多說.這樣引導學生從多角度對本節課歸納總結,感悟點滴,使學生將知識系統化,提高學生素質,鍛煉學生的綜合及表達能力.作業為了達到提高鞏固的目的,期望學生能主動地探求對勾股定理更深入的認識、拓展學生的視野.

數學《勾股定理》教學反思與改進篇六

勾股定理整章書的內容很少,就勾股定理和勾股定理的逆定理,這節課是勾股定理的第一課時,本節課主要是和學生一起探究勾股地理的認識。在教學的過程中感覺有幾個方面需要轉變的。

一 、轉變師生角色,讓學生自主學習。由于高效課堂中教學模式需要進行學生自主討論交流學習,在探究勾股定理的發現時分四人一小組由同學們合作探討作圖,去發現有的直角三角形的三邊具有這種關系,有的直角三角形不具有這種性質。可仍然證明不了我們的猜想是否正確。之后用拼圖的方法再來驗證一下。讓學生們拿出準備好的直角三角形和正方形,利用拼圖和面積計算來證明 + = (學生分組討論。)學生展示拼圖方法,課件輔助演示。 新課標下要求教師個人素質越來越高,教師自身要不斷及時地學習學科專業知識,接受新信息,對自己及時充電、更新,而且要具有幽默藝術的語言表達能力。既要有領導者的組織指導能力,更重要的是要有被學生欣賞佩服的魅力,只有學生配合你,信任你,喜歡你,教師才能輕松駕御課堂,做到應付自如,高效率完成教學目標。 “教師教,學生聽,教師問,學生答,教室出題,學生做”的傳統教學摸模式,已嚴重阻阻礙了現代教育的發展。這種教育模式,不但無法培養學生的實踐能力,而且會造成機械的學習知識,形成懶惰、空洞的學習態度,形成數學的呆子,就像有的大學畢業生都不知道1平方米到底有多大?因此,高效課堂上要求老師一定要改變角色,把主動權交給學生,讓學生提出問題,動手操作,小組討論,合作交流,把學生想到的,想說的想法和認識都讓他們盡情地表達,然后教師再進行點評與引導,這樣做會有許多意外的收獲,而且能充分發揮挖掘每個學生的潛能,久而久之,學生的綜合能力就會與日劇增。

二、轉變教學方式,讓學生探索、研究、體會學習過程。 學生學會了數學知識,卻不會解決與之有關的實際問題,造成了知識學習和知識應用的脫節,感受不到數學與生活的聯系,這是當今課堂教學存在的普遍問題,對于我們這兒的學生起點低、數學基礎差、實踐能力差,對學生的各種能力培養非常不利的。課堂中要特別關注:

1、關注學生是否積極參加探索勾股定理的活動,關注學生能否在活動中積思考,能夠探索出解決問題的方法,能否進行積極的聯想(數形結合)以及學生能否有條理的表達活動過程和所獲得的結論等;

2、關注學生的拼圖過程,鼓勵學生結合自己所拼得的正方形驗證勾股定理。

3、學習的知識性:掌握勾股定理,體會數形結合的思想。

三、提高教學科技含量,充分利用多媒體。 勾股定理知識屬于幾何內容,而幾何圖形可以直觀地表示出來,學生認識圖形的初級階段中主要依靠形象思維。對幾何圖形的認識始于觀察、測量、比較等直觀實驗手段,現代兒童認識幾何圖形亦如此,可以通過直觀實驗了解幾何圖形,發現其中的規律。然而,因為幾何圖形本身具有抽象性和一般性,一種幾何概念可能包含無限多種不同的情形,例如有無數種形狀不同的三角形。對一種幾何概念所包含的一部分具體對象進行直觀實驗所得到的認識,一定適合其他情況驗回答不了的問題。因此,一般地,研究圖形的形狀、大小和位置。 培養邏輯推理能力,作了認真的考慮和精心的設計,把推理證明作為學生觀察、實驗、探究得出結論的自然延續。教科書的幾何部分,要先后經歷“說點兒理”“說理”“簡單推理”幾個層次,有意識地逐步強化關于推理的初步訓練,主要做法是在問題的分析中強調求解過程所依據的道理,體現事出有因、言之有據的思維習慣。 由于信息技術的發展與普及,直觀實驗手段在教學中日益增加,本節課利用我們學校建立了電教教室,通過制作課件對于幾何學的學習起到積極作用。

數學《勾股定理》教學反思與改進篇七

新課程改革要求我們:將數學教學置身于學生自主探究與合作交流的數學活動中,將知識的獲取與能力的培養置身于學生形式各異的探索經歷中,關注學生探索過程中的情感體驗,并發展實踐能力及創新意識,為學生的終身學習及可持續發展奠定堅實的基礎。

首先講解勾股定理的重要性,讓學生明白勾股定理是中學數學幾個重要定理之一,它揭示了直角三角形三邊之間的數量關系,既是直角三角形性質的拓展,也是后續學習“解直角三角形”的基礎。它緊密聯系了數學中兩個最基本的量——數與形,能夠把形的特征(三角形中一個角是直角)轉化成數量關系(三邊之間滿足a2+ b2= c2)堪稱數形結合的典范,在理論上占有重要地位,從而激發學生的求知欲。

一、精心編制數學教學目標知識與技能:1.讓學生在經歷探索定理的過程中,理解并掌握勾股定理的內容;2.掌握勾股定理的證明及介紹相關史料;3.學生能對勾股定理進行簡單計算。

過程與方法:在探索勾股定理的過程中,讓學生經歷“觀察—猜想—歸納—驗證”的數學思想,發展合情推理能力,并體會數形結合和特殊到一般的思想方法。

情感態度與價值觀:體會數學文化的價值,通過介紹中國古代勾股方面的成就,激發學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養他們的民族自豪感,激發學生發奮學習。

二、優化數學教學內容的呈現方式(一)創設問題情境,引導學生思考,激發學習興趣。

1.2002年國際數學家大會在北京舉行的意義。

2.電腦顯示:icm20xx會標。

3. 會標設計與趙爽弦圖。

4. 趙爽弦圖與《周髀算經》中的“商高問題”。

(二)通過學生動手操作,觀察分析,實踐猜想,合作交流,人人參與活動,體驗并感悟“圖形”和“數量”之間的相互聯系。

1.觀察網格上的圖形:分別以直角三角形的三邊向外作正方形,三個正方形的面積關系。再利用幾何畫板演示,引導學生去觀察,大膽的猜測。

2.引導學生將正方形的面積與三角形的邊長聯系起來,讓學生進行分析、歸納,鼓勵學生用用語言表達自己的發現。采取“個人思考——小組活動——全班交流”的形式。

3.讓學生自己任畫一個直角三角形,再次驗證自己的發現,在此基礎上得到直角三角形三邊的關系。

4.電腦演示:銳角三角形、鈍角三角形三邊的平方關系,從而進一步認識直角三角形三邊的關系。

5.通過幾個練習,了解直角三角形三邊關系的作用。

(三)繼續動手操作實踐,思考探究,拼圖驗證猜想。

1.學生動手用準備好的四個直角三角形拼弦圖。

2.利用弦圖來驗證勾股定理。采取“個人思考——小組活動——全班交流”的形式。

(四)拓展延伸,發揮作為千古第一定理的文化價值。

1.簡單介紹勾股定理的文化價值。

2.閱讀:勾股定理成為地球人與“外星人”聯系的“使者”。

3.電腦演示:欣賞勾股樹。

4.推薦進一步課外學習的網址。

5.與課頭的“icm20xx”在中國舉行的意義首尾呼應,進一步激發學生追求遠大目標,奮發學習。

本節課開始我利用了導語中的在北京召開的20xx年國際數學家大會的會標,其圖案為“弦圖”,激發學生的興趣。同時出示勾股定理的圖形,讓學生猜想直角三角形三邊之間的關系。然后利用正方形網格驗證猜想的正確性,還利用教具在黑板上拼圖,啟發學生用面積法得出a2+ b2= c2在講解勾股定理的結論時,為了讓學生更好地理解和掌握勾股定理的探索過程,先讓學生自己進行探索,然后同學進行討論,最后上臺演示。這樣可以加深學生的參與,也讓師生間、生生間有了互動。然后老師利用多種證法讓學生參與勾股定理的探索過程,讓學生自己感覺并最后體會到勾股定理的結論,使得這課的重難點輕易地突破,大大提高教學效率,培養了學生的解決問題的能力和創新能力。

數學《勾股定理》教學反思與改進篇八

《數學課程標準》明確指出:“有效的數學活動不能單純地依賴于模仿與記憶,學生學習數學的重要方式是動手實踐、自主探索與合作交流,以促進學生自主、全面、可持續發展”.數學教學是數學活動的教學,是師生之間、學生之間相互交往、積極互動、共同發展的過程,是“溝通”與“合作”的過程.本節課我結合勾股定理的歷史和畢答哥拉斯的發現直角三角形的特性自然地引入了課題,讓學生親身體驗到數學知識來源于實踐,從而激發學生的學習積極性.為學生提供了大量的操作、思考和交流的學習機會,通過“觀察“——“操作”——“交流”發現勾股定理。層層深入,逐步體會數學知識的產生、形成、發展與應用過程.通過引導學生在具體操作活動中進行獨立思考,鼓勵學生發表自己的見解,學生自主地發現問題、探索問題、獲得結論的學習方式,有利于學生在活動中思考,在思考中活動.

在信息社會,信息技術與課程的整合必將帶來教育者的深刻變化.我充分地利用多媒體教學,為學生創設了生動、直觀的現實情景,具有強列的吸引力,能激發學生的學習欲望.心理學專家研究表明:運動的圖形比靜止的圖形更能引起學生的注意力.在傳統教學中,用筆、尺和圓規在紙上或黑板上畫出的圖形都是

靜止圖形,同時圖形一旦畫出就被固定下來,也就是失去了一般性,所以其中的數學規律也被掩蓋了,呈現給學生的.數學知識也只能停留在感性認識上.本節課我通過flash動畫演示結果和拼圖程以及呈現教學內容。真正體現數學規律的應用價值.把呈現給學生的數學知識從感性認識提升到理性認識,實現一種質的飛躍.

數學《勾股定理》教學反思與改進篇九

《勾股定理》一章檢測結果出來了,學生考績很不理想,很多不該錯的題做錯了。是什么原因致使錯誤頻出呢?我輾轉反側。

一是沒有把握好勾股定理的適用范圍。勾股定理只適用直角三角形,而不適用鈍角三角形和銳角三角形。例如:在△abc中,ac=3,bc=4,有的同學直接根據勾股定理得:ab=5。這是因為與勾股定理的條件相似,已知三角形的兩邊,求第三邊,滿足能利用勾股定理解決問題的特征之一,卻忽略特征之二:勾股定理只適用直角三角形。

二是沒有弄清楚待求的直角三角形的第三邊是斜邊還是直角邊。例如:已知直角三角形兩直角邊的長分別是4c和5c,求第三邊的長。很多同學可能是受勾股數“3,4,5”的影響,錯把結果寫成了3c,其實這里的第三邊是斜邊.

三是缺乏分類思想,考慮問題不全面,導致解答錯誤。例如:已知直角三角形兩邊長分別是1、4,求第三邊的長。這里的第三邊有可能是斜邊也有可能是直角邊,所以結果應該有兩個,但好多同學都填了一個答案。又如:在△abc中,ab=15,ac=13,高ad=12,求△abc的面積。此題應考慮三角形是銳角三角形,還是鈍角三角形兩種情況,否則會漏解。

四是利用直角三角形的判別條件時,沒有分清較短邊和較長邊。例如:已知三角形的三邊長分別為a=0.6,b=1,c=0.8,問這個三角形是直角三角形嗎?有的同學認為此三角形不是直角三角形,其實這個三角形是以b為斜邊的直角三角形。

五是缺少方程思想和轉化思想,使綜合類試題痛失分數。

六是書寫不規范。例如:運用直角三角形的判別條件,判別一個三角形是否為直角三角形的過程中,有的同學寫出一句“由勾股定理得”的不恰當的敘述。

針對上述問題,痛定思痛,感悟頗多:

第一,教學不可削弱技能的訓練。要學生真正掌握某個知識,如果缺少相應技能的訓練是不科學的。正如教人開車的教練把開車的要點、技巧講清楚,然后叫學車的學生馬上開車去考試一樣。試問:當教師在講臺上滔滔不絕地講解時,能否保證每一個學生都專心去聽?能否保證每一個專心去聽的學生都聽得明白?能否保證每一個聽得明白的學生都能解同一類題目?可見:“課堂上教師講,學生聽,聽就會懂,懂就會做。”只是教師一廂情愿的做法,教師只有不滿足于自己的“講清楚”,在課堂上幫助學生獨立完成,并進行一定量的訓練,才能實現教學的有效性。

第二,巧設錯誤案例,讓學生辨錯、糾錯,即學生對教師的有意“示錯”進行分析、判斷,提高防錯能力。在教學中,教師有時可恰到好處,有意地把估計學生易錯的做法顯示給學生,以引起學生的注意,然后通過師生共同分析錯因,加以糾錯,達到及時、有效預防,并避免學生出現類似錯誤的目的。這樣,可防患于未然,并提高學生分析、判斷、解決問題的能力。

第三,教學應注重數學思想和方法傳授。理解掌握各種數學思想和方法是形成數學技能技巧,提高數學能力的前提。 學生學習數學,學會是基礎,會學是目的,教是為了不教。教學中,在加強技能訓練的同時,要強化數學思想和數學方法的教學,做到講方法聯系思想,以思想指導方法,使二者相互交融,相得益彰。此外,在教學中培養學生的“問題意識”,激勵學生善于發現問題、思考問題,并能運用數學方法去解決廣泛的多種多樣的實際問題,以便增強學生探究新知識、新方法的創造能力。

第四,教學應加大綜合訓練的力度。目前的綜合題已經由單純的知識疊加型轉化為知識、方法和能力綜合型尤其是創新能力型試題,具有知識容量大、解題方法多、能力要求高、突顯數學思想方法的運用以及創新意識等特點。教學時應抓好“三轉”能力的培養:(1)語言轉換能力。每道數學綜合題都是由一些特定的文字語言、符號語言、圖形語言所組成,解綜合題往往需要較強的語言轉換能力,能把普通語言轉換成數學語言。(2)概念轉換能力:綜合題的轉譯常常需要較強的數學概念的轉換能力。(3)數形轉換能力。解題中的數形結合,就是對題目的條件和結論既分析其代數含義又分析其幾何意義,力圖在代數與幾何的結合上找出解題思路。只有如此,方可找到解決綜合題的突破口。

第五,教學勿忘發揮板書的特有功能。板書通過學生的視角器官傳遞信息,比語言富有直觀性。條例清晰,層次分明,邏輯嚴謹的解答過程的板演,不但便于學生理解、掌握知識,還會給學生起到示范作用。

相信通過反思教學,優化方法,細化過程,一定能取得事半功倍之效。

數學《勾股定理》教學反思與改進篇十

“教師教,學生聽,教師問,學生答,教師出題,學生做”的傳統教學摸模式,已嚴重阻礙了現代教育的發展。這種教育模式,不但無法培養學生的實踐能力,而且會造成機械的學習知識,形成懶惰、空洞的學習態度,形成數學的呆子,就像有的大學畢業生都不知道1平方米到底有多大?因此,《新課標》要求老師一定要改變角色,變主角為配角,把主動權交給學生,讓學生提出問題,動手操作,小組討論,合作交流,把學生想到的,想說的想法和認識都讓他們盡情地表達,然后教師再進行點評與引導,這樣做會有許多意外的收獲,而且能充分發揮挖掘每個學生的潛能,久而久之,學生的綜合能力就會與日劇增。上這節課前教師可以給學生布置任務:查閱有關勾股定理的資料(可上網查,也可查閱報刊、書籍),提前兩三天由幾位學生匯總(教師可適當指導)。這樣可使學生在上這節課前就對勾股定理歷史背景有全面的理解,從而使學生認識到勾股定理的重要性,學習勾股定理是非常必要的,激發學生的學習興趣,對學生也是一次愛國主義教育,培養民族自豪感,激勵他們奮發向上,同時培養學生的自學能及歸類總結能力。

學生學會了數學知識,卻不會解決與之有關的實際問題,造成了知識學習和知識應用的脫節,感受不到數學與生活的聯系,這是當今課堂教學存在的普遍問題,對于學生實踐能力的培養非常不利的。現在的數學教學到處充斥著過量的、重復的題目訓練。我認為真正的教學方式的轉變要體現在這兩個方面:一是要關注學生學習的過程。首先要關注學生是否積極參加探索勾股定理的活動,關注學生能否在活動中積思考,能夠探索出解決問題的方法,能否進行積極的聯想(數形結合)以及學生能否有條理的表達活動過程和所獲得的結論等;同時要關注學生的拼圖過程,鼓勵學生結合自己所拼得的正方形驗證勾股定理。二是要關注學生學習的知識性及其實際應用。本節課的主要目的是掌握勾股定理,體會數形結合的思想。現在往往是學生知道了勾股定理而不知道在實際生活中如何運用勾股定理,我們在學生了解勾股定理以后可以出一個類似于《九章算術》中的應用題:在平靜的湖面上,有一棵水草,它高出水面3分米,一陣風吹來,水草被吹到一邊,草尖與水面平齊,已知水草移動的水平距離為6分米,問這里的水深是多少?

教學方式的轉變在關注知識的形成同時,更加關注知識的應用,特別是所學知識在生活中的應用,真正起到學有所用而不是枯燥的理論知識。這一點上在新課標中體現的尤為明顯。

課堂教學中要正確地、充分地引導學生探究知識的形成過程,應創造讓學生主動參與學習過程的條件,培養學生的觀察能力、合作能力、探究能力,從而達到提高學生數學素質的目的。多媒體教學的優化組合,在幫助學生形成知識的過程中扮演著重要的角色。通過面積計算來猜想勾股定理或是通過面積割補來驗證勾股定理并不是所有的學生都是很清楚,教者可通過多媒體來演示其過程不僅使知識的形成更加的直觀化,而且可以提高學生的學習興趣。

評價對于學生來說有兩種評價的方式。一種是以他人評價為基礎的,另一種是以自我評價為基礎的。每個人素質生成都經歷著這兩種評價方式的發展過程,經歷著一個從學會評價他人到學會評價自己的發展過程。實施他人評價,完善素質發展的他人監控機制很有必要。每個人都要以他人為鏡,從他人這面鏡子中照見自我。但發展的成熟、素質的完善主要建立在自我評價的基礎上,是以素質的自我評價、自我調節、自我教育為標志的。因此要改變單純由教師評價的現狀,提倡評價主體的多元化,把教師評價、同學評價、家長評價及學生的自評相結合。

在本節課的教學中,老師可以從多方面對學生進行合適的評價。如以學生的課前知識準備是一種態度的評價,上課的拼圖能力是一種動手能力的評價,對所結論的分析是對猜想能力的一種評價,對實際問題的分析是轉化能力的一種評價等等。

數學《勾股定理》教學反思與改進篇十一

今后的教學中:

(1)立足教材,鉆研教學大綱的要求;試卷中較多題目是根據課本的題目改編而來,從學生的考試情況來看課本的題目掌握不理想,這說明在平時的教學中對書本的重視不夠,過多地追求課外題目的訓練,但忽略學生實實在在地理解課本知識,提高思維能力。課堂上盡量把課堂還給學生,讓學生積極參與到課堂中,多機會給學生展示,表演,講題,把思路和方法講出來,使學生更清淅地理解題目,提升自己對數學的理解。多點讓學生獨立思考,發現問題,解決問題。

(2)注重培養學生良好的學習習慣。

(3)加強例題示范教學,培養學生解題書寫表達。

(4)多一些數學方法、數學思想的滲透,少一些知識的生搬硬套。

(5)在數學教學過程中,課堂上系統地對數學知識進行整理、歸納、溝通知識間的內在聯系,形成縱向、橫向知識鏈,從知識的聯系和整體上把握基礎知識。

(6)針對學生的兩極分化,加強課外作業布置的針對性。讓每個學生課外有適合的作業做,對不同層次的學生布置不同難度的作業,提高課外學習的效率,減輕學生課外作業的負擔。正確看待學生學習數學的差異,克服兩極分化。數學課堂上多考慮、關照中下生,讓他們在數學課堂上聽得進,肯用手。

(7)教師在平時的課堂教學中必須致力于改變教師的教學行為和學生的學習方式,加強學法指導,提高學生的閱讀能力,平時培養學生的自學能力,使學生實實在在地理解課本知識,提高思維能力。平時要關注課本、關注運算能力、關注教學中的薄弱環節。

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔
a.付費復制
付費獲得該文章復制權限
特價:5.99元 10元
微信掃碼支付
已付款請點這里
b.包月復制
付費后30天內不限量復制
特價:9.99元 10元
微信掃碼支付
已付款請點這里 聯系客服
主站蜘蛛池模板: 久久久亚洲欧洲日产国码二区 | 视频一本大道香蕉久在线播放 | 最近2019年中文字幕一页 | 国产精品亚洲午夜一区二区三区 | 91久久亚洲最新一本 | 黄色网址最新 | 美女一级大黄录像一片 | 国产欧美日韩精品一区二 | 全黄冷激性性视频 | 99视频精品 | 偷自拍视频区综合视频区 | 欧美久久综合九色综合 | 国产人成免费视频 | 白丝丝袜高跟国产在线视频 | 一级毛片区 | 成年美女黄网站色大片免费看 | 成年男女男精品免费视频网站 | 不卡一区二区在线观看 | 国产丝袜在线播放 | 一本久久道| 成人免费观看黄a大片夜月 成人免费观看www视频 | 国产日产高清欧美一区二区三区 | 韩国成人在线视频 | 日日操影院| 欧美一级视频精品观看 | 狼人香蕉网 | 欧美视频第一区 | y4480午夜66| 色偷偷人人澡久久天天 | 欧美线在线精品观看视频 | 精品视频一区二区三区免费 | 国产苐1页影院草草影院 | 丁香五月情 | 黄网页在线观看 | 日本免费一二区视频 | 成人羞羞视频在线观看 | 老司机午夜精品视频在线观看免费 | a级国产视频 | 免费黄色| 国产午夜精品一二区理论影院 | 被窝国产理论一二三影院 |