91夜夜人人揉人人捏人人添-91一区二区三区四区五区-91伊人久久大香线蕉-91在线电影-免费a网址-免费v片网站

當前位置:網站首頁 >> 作文 >> 最新公式法因式分解教案(五篇)

最新公式法因式分解教案(五篇)

格式:DOC 上傳日期:2024-03-20 18:44:16
最新公式法因式分解教案(五篇)
時間:2024-03-20 18:44:16     小編:zdfb

作為一位杰出的教職工,總歸要編寫教案,教案是教學活動的總的組織綱領和行動方案。優秀的教案都具備一些什么特點呢?那么下面我就給大家講一講教案怎么寫才比較好,我們一起來看一看吧。

公式法因式分解教案篇一

(知識、能力、教育)

1.了解分解因式的意義,會用提公因式法、 平方差公式和完全平方公式(直接用公式不超過兩次)分解因式(指數是正整數).

2.通過乘法公式 , 的逆向變形,進一步發展學生觀察、歸納、類比、概括等能力,發展有條理的思考及語言表達能力

掌握用提取公因式法、公式法分解因式

根據題目的形式和特征 恰當選擇方法進行分解,以提高綜合解題能力。

學案

一:【 課前預習】

(一):【知識梳理】

1.分解因式:把一個多項式化成 的形式,這種變形叫做把這個多項式分解因式.

2.分解困式的方法:

⑴提公團式法:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種分解因式的方法叫做提公因式法.

⑵運用公式法:平方差公式: ;

完全平方公式: ;

3.分解因式的步驟:

(1)分解 因式時,首先考慮是否有公因式,如果有公因式,一定先提取公團式,然后再考慮是否能用公式法 分解.

(2)在用公式時,若是兩項,可考慮用平方差公式;若是三項,可考慮用完全平方公式;若是三項以上,可先進行適當的分組,然后分解因式。

4.分解因式時常見的思維誤區:

提公因式時,其公因式應找字母指數最低的,而不是以首項為準.若有一項被全部提出,括號內的項 1易漏掉.分解不徹底,如保留中括號形式,還能繼續分解等

(二):【課前練習】

1.下列各組多項式中沒有公因式的是( )

a.3x-2與 6x2-4x b.3(a-b)2與11(b-a)3

與 nynx c與 abbc

2. 下列各題中,分解因式錯誤的是( )

3. 列多項式能用平方差公式分解因式的是()

4. 分解因式:x2+2xy+y2-4 =_____

5. 分解因式:(1) ;

(2) ;(3) ;

(4) ;(5)以上三題用了 公式

二:【經典考題剖析】

1. 分解因式:

(1) ;(2) ;(3) ;(4)

分析:①因式分解時,無論有幾項,首先考慮提取公因式。提公因式時,不僅注意數,也要 注意字母,字母可能是單項式也可能是多項式,一次提盡。

②當某項完全提出后,該項應為1

③注意 ,

④分解結果(1)不帶中括號;(2)數字因數在前,字母因數在后;單項式在前,多項式在后;(3)相同因式寫成冪的形式;(4 )分解結果應在指定范圍內不能再分解為止;若無指定范圍,一般在有理數范圍內分解。

2. 分解因式:(1) ;(2) ;(3)

分析:對于二次三項齊次式,將其中一個字母看作末知數,另一個字母視為常數。首先考慮提公因式后,由余下因式的項數為3項,可考慮完全平方式或十字相乘法繼續分解;如果項數為2,可考慮平方差、立方差、立方和公式。(3)題無公因式,項數為2項,可考慮平方差公式先分解開,再由項數考慮選擇方法繼續分解。

3. 計算:(1)

(2)

分析:(1)此題先分解因式后約分,則余下首尾兩數。

(2)分解后,便有規可循,再求1到20xx的`和。

4. 分解因式:(1) ;(2)

分析:對于四項或四項以上的多項式的因式分解,一般采用分組分解法,

5. (1)在實數范圍內分解因式: ;

(2)已知 、 、 是△abc的三邊,且滿足 ,

求證:△abc為等邊三角形。

分析:此題給出的是三邊之間的關系,而要證等邊三角形,則須考慮證 ,

從已知給出的等式結構看出,應構造出三個完全平方式 ,

即可得證,將原式兩邊同乘以2即可。略證:

即△abc為等邊三角形。

三:【課后訓練】

1. 若 是一個完全平方式,那么 的值是( )

a.24 b.12 c.12 d.24

2. 把多項式 因式分解的結果是( )

a. b. c. d.

3. 如果二次三項式 可分解為 ,則 的 值為( )

a .-1 b.1 c. -2 d.2

4. 已知 可以被在60~70之間的兩個整數整除,則這兩個數是( )

a.61、63 b.61、65 c.61、67 d.63、65

5. 計算:19982002= , = 。

6. 若 ,那么 = 。

7. 、 滿足 ,分解因式 = 。

8. 因式分解:

(1) ;(2)

(3) ;(4)

9. 觀察下列等式:

想一想,等式左邊各項冪的底數與右邊冪的底數有何關 系?猜一猜可引出什么規律?用等式將其規律表示出來: 。

10. 已知 是△abc的三邊,且滿足 ,試判斷△abc的形狀。閱讀下面解題過程:

解:由 得:

即 ③

△abc為rt△。 ④

試問:以上解題過程是否正確: ;若不正確,請指出錯在哪一步?(填代號) ;錯誤原因是 ;本題結論應為 。

四:【課后小結】

布置作業 地綱

公式法因式分解教案篇二

教學知識點

使學生了解因式分解的好處,明白它與整式乘法在整式變形過程中的相反關系。

透過觀察,發現分解因式與整式乘法的關系,培養學生觀察潛力和語言概括潛力。

透過觀察,推導分解因式與整式乘法的關系,讓學生了解事物間的因果聯系。

1、理解因式分解的好處。

2、識別分解因式與整式乘法的關系。

教學難點透過觀察,歸納分解因式與整式乘法的關系。

導入:由(a+b)(a-b)=a2-b2逆推a2-b2=(a+b)(a-b)

1、討論993-99能被100整除嗎?你是怎樣想的?與同伴交流。

993-99=99×98×100

2、議一議

你能嘗試把a3-a化成n個整式的乘積的形式嗎?與同伴交流。

3、做一做

(1)計算下列各式:①(m+4)(m-4)=_________;②(y-3)2=__________;

③3x(x-1)=_______;④m(a+b+c)=_______;⑤a(a+1)(a-1)=________

(2)根據上面的算式填空:

①3x2-3x=()();②m2-16=()();③ma+mb+mc=()();

④y2-6y+9=()2。⑤a3-a=()()。

定義:把一個多項式化成幾個整式的積的形式,叫做把這個多項式分解因式。

4。想一想

由a(a+1)(a-1)得到a3-a的變形是什么運算?由a3-a得到a(a+1)(a-1)的變形與這種運算有什么不同?你還能舉一些類似的例子加以說明嗎?

下面我們一齊來總結一下。

如:m(a+b+c)=ma+mb+mc(1)

ma+mb+mc=m(a+b+c)(2)

5、整式乘法與分解因式的聯系和區別

ma+mb+mcm(a+b+c)。因式分解與整式乘法是相反方向的變形。

6。例題下列各式從左到右的變形,哪些是因式分解?

(1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);

(3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2。

p40隨堂練習

本節課學習了因式分解的好處,即把一個多項式化成幾個整式的積的形式;還學習了整式乘法與分解因式的關系是相反方向的變形。

公式法因式分解教案篇三

1、進一步鞏固因式分解的概念;

2、鞏固因式分解常用的三種方法

3、選擇恰當的方法進行因式分解4、應用因式分解來解決一些實際問題

5、體驗應用知識解決問題的樂趣

教學重點:靈活運用因式分解解決問題

教學難點:靈活運用恰當的因式分解的方法,拓展練習2、3

利用因式分解往往能將一些復雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。

判斷下列各式哪些是因式分解?(讓學生先思考,教師提問講解,讓學生明確因式分解的概念以及與乘法的關系)

(1)、x2—4y2=(x+2y)(x—2y)因式分解(2)。2x(x—3y)=2x2—6xy整式乘法

(3)、(5a—1)2=25a2—10a+1整式乘法(4)。x2+4x+4=(x+2)2因式分解

(5)、(a—3)(a+3)=a2—9整式乘法(6)。m2—4=(m+4)(m—4)因式分解

(7)、2πr+2πr=2π(r+r)因式分解

分解因式要注意以下幾點:

(1)。分解的對象必須是多項式。

(2)。分解的結果一定是幾個整式的乘積的形式。

(3)。要分解到不能分解為止。

提取公因式法:—6x2+6xy+3x=—3x(2x—2y—1)公因式的概念;公因式的求法

公式法:平方差公式:a2—b2=(a+b)(a—b)完全平方公式:a2+2ab+b2=(a+b)2

師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個長方形折疊就可以得到一個正方形。現在請同學們拿出一個長方形紙條,按動畫所示進行折疊處理。

場景一:正方形折疊演示

師:這就是我們得到的正方形。下面請同學們拿出三角板(刻度尺)和圓規,我們來研究正方形的幾何性質—邊、角以及對角線之間的關系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點到各頂點的長度。

[學生活動:各自測量。]

鼓勵學生將測量結果與鄰近同學進行比較,找出共同點。

講授新課

找一兩個學生表述其結論,表述是要注意糾正其語言的規范性。

動畫演示:

場景二:正方形的性質

師:這些性質里那些是矩形的性質?

[學生活動:尋找矩形性質。]

動畫演示:

場景三:矩形的性質

師:同樣在這些性質里尋找屬于菱形的性質。

[學生活動;尋找菱形性質。]

動畫演示:

場景四:菱形的性質

師:這說明正方形具有矩形和菱形的全部性質。

及時提出問題,引導學生進行思考。

師:根據這些性質,我們能不能給正方形下一個定義?怎么樣給正方形下一個準確的定義?

[學生活動:積極思考,有同學做躍躍欲試狀。]

師:請同學們回想矩形與菱形的定義,可以根據矩形與菱形的定義類似的給出正方形的定義。

學生應能夠向出十種左右的定義方式,其余作相應鼓勵,把以下三種板書:

“有一組鄰邊相等的矩形叫做正方形。”

“有一個角是直角的菱形叫做正方形。”

“有一個角是直角且有一組鄰邊相等的平行四邊形叫做正方形。”

[學生活動:討論這三個定義正確不正確?三個定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]

師:根據定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關系梳理一下。

試一試把下列各式因式分解:

(1)。1—x2=(1+x)(1—x)(2)。4a2+4a+1=(2a+1)2

(3)。4x2—8x=4x(x—2)(4)。2x2y—6xy2=2xy(x—3y)

例1、分解因式

(1)—x3y3+x2y+xy(2)6(x—2)+2x(2—x)

(3)(4)y2+y+

例2、分解因式

1、a3—ab2=2、(a—b)(x—y)—(b—a)(x+y)=3、(a+b)2+2(a+b)—15=

4、—1—2a—a2=5、x2—6x+9—y26、x2—4y2+x+2y=

例3、分解因式

1、72—2(13x—7)22、8a2b2—2a4b—8b3

1、(4x2—9y2)÷(2x+3y)2、(a2b—ab2)÷(b—a)

3、解方程:(1)x2=5x(2)(x—2)2=(2x+1)2

4、。若x=—3,求20x2—60x的值。5、1993—199能被200整除嗎?還能被哪些整數整除?

1。計算:7652×17—2352×17解:7652×17—2352×17=17(7652—2352)=17(765+235)(765—235)

2、20042+20xx被20xx整除嗎?

3、若n是整數,證明(2n+1)2—(2n—1)2是8的倍數。

今天你對因式分解又有哪些新的認識?

公式法因式分解教案篇四

教學目標:

1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式綜合應用;能利用平方差公式法解決實際問題。

2、經歷探究分解因式方法的過程,體會整式乘法與分解因式之間的聯系。

3、通過對公式的探究,深刻理解公式的應用,并會熟練應用公式解決問題。

4、通過探究平方差公式特點,學生根據公式自己取值設計問題,并根據公式自己解決問題的過程,讓學生獲得成功的體驗,培養合作交流意識。

教學重點:

應用平方差公式分解因式.

教學難點:

靈活應用公式和提公因式法分解因式,并理解因式分解的要求.

教學過程:

一、復習準備 導入新課

1、什么是因式分解?判斷下列變形過程,哪個是因式分解?

①(x+2)(x-2)= ②

2、我們已經學過的因式分解的方法有什么?將下列多項式分解因式。

x2+2x

a2b-ab

3、根據乘法公式進行計算:

(1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=

二、合作探究 學習新知

(一) 猜一猜:你能將下面的多項式分解因式嗎?

(1)= (2)= (3)=

(二)想一想,議一議: 觀察下面的公式:

=(a+b)(a—b)(

這個公式左邊的多項式有什么特征:_____________________________________

公式右邊是__________________________________________________________

這個公式你能用語言來描述嗎? _______________________________________

(三)練一練:

1、下列多項式能否用平方差公式來分解因式?為什么?

① ② ③ ④

2、你能把下列的數或式寫成冪的形式嗎?

(1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) 0.49b2=( )2 (7) 81n6=( )2 (8) 100p4q2=( )2

(四)做一做:

例3 分解因式:

(1) 4x2- 9 (2) (x+p)2- (x+q)2

(五)試一試:

例4 下面的式子你能用什么方法來分解因式呢?請你試一試。

(1) x4- y4 (2) a3b- ab

(六)想一想:

某學校有一個邊長為85米的正方形場地,現在場地的四個角分別建一個邊長為5米的正方形花壇,問場地還剩余多大面積供學生課間活動使用?

公式法因式分解教案篇五

教學目標:

1.知識與技能:掌握運用提公因式法、公式法分解因式,培養學生應用因式分解解決問題的能力.

2.過程與方法:經歷探索因式分解方法的過程,培養學生研討問題的方法,通過猜測、推理、驗證、歸納等步驟,得出因式分解的方法.

3.情感態度與價值觀:通過因式分解的學習,使學生體會數學美,體會成功的自信和團結合作精神,并體會整體數學思想和轉化的數學思想.

教學重、難點:用提公因式法和公式法分解因式.

教具準備:多媒體課件(小黑板)

教學方法:活動探究法

教學過程:

引入:在整式的變形中,有時需要將一個多項式寫成幾個整式的乘積的形式,這種變形就是因式分解.什么叫因式分解?

知識詳解

知識點1 因式分解的定義

把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式因式分解,也叫做把這個多項式分解因式.

【說明】 (1)因式分解與整式乘法是相反方向的變形.

例如:

(2)因式分解是恒等變形,因此可以用整式乘法來檢驗.

怎樣把一個多項式分解因式?

知識點2 提公因式法

多項式ma+mb+mc中的各項都有一個公共的因式m,+mb+mc=m(a+b+c)就是把ma+mb+mc分解成兩個因式乘積的形式,其中一個因式是各項的公因式m,另一個因式(a+b+c)是ma+mb+mc除以m所得的商,像這種分解因式的方法叫做提公因式法.例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1).

探究交流

下列變形是否是因式分解?為什么?

(1)3x2y-xy+y=y(3x2-x);(2)x2-2x+3=(x-1)2+2;

(3)x2y2+2xy-1=(xy+1)(xy-1); (4)xn(x2-x+1)=xn+2-xn+1+xn.

典例剖析 師生互動

例1 用提公因式法將下列各式因式分解.

(1) -x3z+x4y; (2) 3x(a-b)+2y(b-a);

分析:(1)題直接提取公因式分解即可,(2)題首先要適當的變形, 再把b-a化成-(a-b),然后再提取公因式.

小結 運用提公因式法分解因式時,要注意下列問題:

(1)因式分解的結果每個括號內如有同類項要合并,而且每個括號內不能再分解.

(2)如果出現像(2)小題需統一時,首先統一,盡可能使統一的個數少。這時注意到(a-b)n=(b-a)n(n為偶數).

(3)因式分解最后如果有同底數冪,要寫成冪的形式.

學生做一做 把下列各式分解因式.

(1) (2a+b)(2a-3b)+(2a+5b)(2a+b) ;(2) 4p(1-q)3+2(q-1)2

知識點3 公式法

(1)平方差公式:a2-b2=(a+b)(a-b).即兩個數的平方差,等于這兩個數的和與這個數的差的積.例如:4x2-9=(2x)2-32=(2x+3)(2x-3).

(2)完全平方公式:a2±2ab+b2=(a±b)2.其中,a2±2ab+b2叫做完全平方式.即兩個數的平方和加上(或減去)這兩個數的積的2倍,等于這兩個數的和(或差)的平方.例如:4x2-12xy+9y2=(2x)2-2·2x·3y+(3y)2=(2x-3y)2.

探究交流

下列變形是否正確?為什么?

(1)x2-3y2=(x+3y)(x-3y);(2)4x2-6xy+9y2=(2x-3y)2;(3)x2-2x-1=(x-1)2.

例2 把下列各式分解因式.

(1) (a+b)2-4a2;(2)1-10x+25x2;(3)(m+n)2-6(m+n)+9.

分析:本題旨在考查用完全平方公式分解因式.

學生做一做 把下列各式分解因式.

(1)(x2+4)2-2(x2+4)+1; (2)(x+y)2-4(x+y-1).

綜合運用

例3 分解因式.

(1)x3-2x2+x; (2) x2(x-y)+y2(y-x);

分析:本題旨在考查綜合運用提公因式法和公式法分解因式.

小結 解因式分解題時,首先考慮是否有公因式,如果有,先提公因式;如果沒有公因式是兩項,則考慮能否用平方差公式分解因式. 是三項式考慮用完全平方式,最后,直到每一個因式都不能再分解為止.

探索與創新題

例4 若9x2+kxy+36y2是完全平方式,則k= .

分析:完全平方式是形如:a2±2ab+b2即兩數的平方和與這兩個數乘積的2倍的和(或差).

學生做一做 若x2+(k+3)x+9是完全平方式,則k=.

課堂小結

用提公因式法和公式法分解因式,會運用因式分解解決計算問題.

各項有"公"先提"公",首項有負常提負,某項提出莫漏"1",括號里面分到"底"。

自我評價 知識鞏固

1.若x2+2(m-3)x+16是完全平方式,則m的值等于( )

a.3 b.-5 c.7. d.7或-1

2.若(2x)n-81=(4x2+9)(2x+3)(2x-3),則n的值是( )

a.2 b.4 c.6 d.8

3.分解因式:4x2-9y2=.

4.已知x-y=1,xy=2,求x3y-2x2y2+xy3的值.

5.把多項式1-x2+2xy-y2分解因式

思考題 分解因式(x4+x2-4)(x4+x2+3)+10.

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔
a.付費復制
付費獲得該文章復制權限
特價:5.99元 10元
微信掃碼支付
已付款請點這里
b.包月復制
付費后30天內不限量復制
特價:9.99元 10元
微信掃碼支付
已付款請點這里 聯系客服
主站蜘蛛池模板: 九九在线精品视频播放 | 日本欧美一区二区三区 | 亚洲成人在线免费 | 国内精品视频在线观看 | 青春久久| 国产精品成人免费视频不卡 | 日本午夜在线视频 | 久草观看视频 | 久久精品亚洲欧美日韩久久 | 亚洲噜噜噜噜噜影院在线播放 | 天天干天天操天天摸 | 在线成人观看 | a级特黄毛片免费观看 | 欧美日韩在线精品成人综合网 | 抖音成人短视频 | 日本系列 1页 亚洲系列 | 国产 欧美 日韩 在线 | 国产成人lu在线视频 | 久久99精品久久久久久园产越南 | 天堂伊人 | 国产人成午夜免费噼啪视频 | 国产在线精品观看 | 久久精品视频久久 | 欧美色图另类图片 | 欧美性猛交一区二区三区精品 | 狠狠操狠狠色 | 伊人激情 | 久色网 | 国产精品久久久久久久人人看 | 视频精品一区 | 中文字幕一区日韩在线视频 | 日本一区二区三区不卡在线视频 | 韩国2023理伦片免费观看 | 羞羞网站在线免费观看 | 日本黄a三级三级三级 | 色综合天天综合中文网 | 国产成人影院 | 国产在线天堂a v | 国产精品福利在线观看秒播 | 国产黄在线播放免费观看 | 久久精品国产半推半就 |