每個人都曾試圖在平淡的學習、工作和生活中寫一篇文章。寫作是培養人的觀察、聯想、想象、思維和記憶的重要手段。范文怎么寫才能發揮它最大的作用呢?這里我整理了一些優秀的范文,希望對大家有所幫助,下面我們就來了解一下吧。
《比例的意義》教學設計篇一
本堂課是在學生學習了正比例的基礎上學習反比例,由于學生有了前面學習正比例的基礎,加上正比例與反比例在意義上研究的時候存在有一定的共性,因此學生在整堂課的學習上與前面學習的正比例相比有明顯的提高。
第一堂課在教學的時候,對于課本上的練一練沒有進行選擇,要求學生全部解答,結果發現學生化的時間比較多,而且效果也不是特別的理想。有了上次的經驗,教師做適當的補充和引導,在第二節課的時候,學生的完成情況就比較理想,時間不多效率也高。
另外,由于在課始的導入環節中的未知每本頁數與裝訂的本書的求解就已經知道求解方法,所遇課堂學生就沒有刻意的去講解,結果從課后的練習第二題來看,學生的掌握情況不是很好,雖然有些同學已經利用的了反比例的方法解答。后來想想本堂課學習的是反比例,既然已經學習了反比例,對于課后安排的這樣的習題就不應該還只是利用上節課的方法去解答,應該很好的把這堂課所學習到的知識利用起來,一來是學生進一步理解反比例,二來可以為后面學生學習利用反比例解答應用題留下伏筆。
在課堂上講解:長方形的面積一定,它的長和寬。這道題是,想到三角形是否學生也能正確的解答,于是就補充了:三角形的面積一定,它的底與相應的高是不是成反比例?為什么?
這個問題的提出,使我對于為什么教材在安排上引入了利用字母表示有了更好的理解,起初不太清楚為什么要用字母表示,現在想想,字母的標識其實是最能用數學語言來判斷是不是成反比例,所以可以寫成ah=s(一定)來說明底和高成反比例。這樣學生在書寫數量關系的時候,思維方法就會更明確。
《比例的意義》教學設計篇二
1、理解比例的意義,能運用比例的意義判斷兩個比能否組成比例,并會組比例。
2、探索國旗中蘊含的數學知識,滲透愛國主義教育,提高學生的認知能力。
3、體驗獲得成功的樂趣,建立學好數學的自信心。
教學重點:理解比例的意義。
教學難點:應用比例的意義判斷兩個比能否組成比例。
ppt課件
請同學們回憶一下上學期我們學過的比的知識,誰能說說:
1、什么叫做比?比的書寫形式有哪些?
2、什么叫做比值?
一、情境引入
同學們,每個星期一的早上我們學校都會舉行什么活動?我們一起說吧。
(生齊聲說:升旗儀式)
課件出示:升旗儀式的情景
你們對這個情景已經非常熟悉了,你們對這面國旗的長和寬分別是多少了解嗎?
不了解是吧?那老師告訴大家:
課件出示并介紹:我們這面國旗的長是2.4米、寬是1.6米。
提問:你除了在升旗儀式上還在生活中的哪些地方加到過國旗呢?
指名回答(學校周一升旗時操場上的國旗、會議桌上的國旗、教室后面的國旗、)
在很多的場合像我們的教室、還有大型的慶典活動上我們都可以看到莊嚴的國旗。
那么你們知道這些國旗的尺寸大小嗎?追問:知道不知道?
那么下面呢我們看一下老師收集到的一些信息。
課件出示不同場合下的國旗
課件出示:不同場合下的國旗
提問:誰能用最簡短的語言描述一下這四面國旗分別出現在什么地方?并讀出它的長和寬(1)天安門廣場的國旗,長5米,寬10/3米。
(2)學校的國旗長2.4米,寬1.6米。
(3)教室里面的國旗長60厘米,寬40厘米。
(4)會議桌上的國旗長15厘米,寬10厘米。
那我們現在看到的這些國旗的大小都一樣嗎?
師小結:在不同的場合的國旗的大小是不一樣的。
追問:它們的形狀相同嗎?(相同)
盡管它們的大小不一樣,但形狀相同。我們看上去每面國旗在我們的眼中還是那么的莊嚴和美麗,那么的和諧和統一是嗎?那么到底按照怎么樣的標準才能制作出這種大小不同、形狀相同的國旗呢?其實每面國旗的里面是否也蘊含著我們的數學知識呢—比例!(板書課題:比例)下面我們就一起來研究這個問題。
二:探究新知
下面請同學們拿出練習本,聽清要求:
先寫出圖中國旗長與寬的比然后再求出它的比值。
學生自主計算,教師巡視。
提醒:同學們在計算時,一定要認真。注意計算結果的準確性。
哪個同學愿意和大家來分享你的成果?和大家勇敢的分享你的成果。指名回答
根據學生匯報并分類板書。
5:10/3=3/2
2.4::16=3/2
60:40=3/2
15:10=3/2
大家同意他的計算結果嗎?
師:請同學們觀察黑板上的計算結果,看看有什么發現。
指名回答
師小結:說的非常好,這是個很重大的發現,這四面國旗它們的長與寬都有變化,但比值都是3/2 。其實呀不止這兩面紅旗長與寬的比是3:2,所有國旗長與寬的比的比值都是3/2,這在國旗法中有明文規定的
板書:5:10/3 2.4:1.6
師:像這樣的兩個比,它們的比值相等的,也就說這兩個比相等,那么我們可以用什么符號把它們連接起來變成一個等式?
來大家一起把這個等式念一下(學生齊讀)5:10/3=2.4:1.6
提問:那么誰能根據這四個5:10/3=3/2
2.4:1.6=3/2
60:40=3/2
15:10=3/2
相等的比也像老師一樣寫一個等式呢?
指名回答并根據匯報板書
我們寫的這些等式數學上把它叫做比例。誰能根據自己的理解說說什么叫做比例?指名回答
老師明確:我們把表示兩個比相等的式子叫做比例。(重點強調比值相等)
大家齊讀兩遍,開始。
學生齊讀
這就是我們今天要學習的內容—比例的意義
板書課題
提問:在讀了比例的意義以后,在這句話里你認為那些字非常重要呢?
指名回答
教師明確:兩個比相等并在這句話的字的下面標上黑點
表示兩個比相等的式子叫做比例。
2、深入理解比例的意義
那大家看一看:15∶3和60∶12能組成比例嗎?你是怎樣判斷的?對,15∶3的比值是5;60∶12的比值也是1.5,所以說15∶3和60∶12能組成比例。
那同學們,要判斷兩個比能不能組成比例,關鍵是看什么啊?對,判斷兩個比能不能組成比例,關鍵要看它們的比值是否相等。
追問并出示課件:那同學們,要判斷兩個比能不能組成比例,關鍵是看什么啊?
(指名回答)
大家同意嗎?
對學生的回答進行評價
追問:如果不相等的話,能組成比例嗎?
教學比例的另外一種寫法:同學們知道比還有另外一種寫法(分數的寫法)像2.4:1.6=15:10這個比例還可以寫成2.4/1.6=15/10,這是兩種不同的寫法!
(3)、合作探究:在四面國旗的長和寬的數據中,你還能找出哪些比可以組成比例??
請同學們在小組內討論討論!看哪個小組的同學找的多,開始吧!
班內交流:哪位同學說一說你們小組找出來哪些比例?
同學們真了不起,從這四面大小不同的國旗中,就組成了這么多不同的比例。比老師找的還多呢,請看屏幕
展示:2.4:1.6 = 60:40 (長:寬=長:寬)
1.6:2.4 = 40:60 (寬:長=寬:長)
2.4:60 =1.6:40 (長:長=寬:寬)
這里能組成的比例還有很多,同學們課下再找出其他的比例吧!
2、比和比例的區別?
(1)同學們,以前學了比,現在又學比例,那你覺得比和比例一樣嗎?現在老師有個問題需要同學們幫忙解決一下,請看屏幕,“比和比例有什么區別?”下面請同學們小組內探討,一會兒告訴老師好嗎?好,開始吧!
(2)交流:誰愿意來說一說你們小組討論的結果?
(生答)
(3)展示:說的太好了,比由兩個數組成,是一個式子,表示兩個數相除。比例由四個數組成,是一個等式。它是表示兩個比相等的式子。,請看屏幕上的表格
三、智慧城堡
師小結:今天這節課同學們表現得特別好,我們一起去智慧城堡闖闖關同學們有沒有信心?
四、談收獲
這節課,大家都非常積極和認真,老師相信同學們的收獲肯定很多,那誰想來和大家分享一下你的收獲呢?
五、全課總結:
師小結:比例的知識在我們生活中的應用非常廣泛,法國著名的建筑物埃菲爾鐵塔,希臘雕像斷臂維納斯,還有閃爍的五角星,這些事物之所以能給我們美感,是因為它們的構造都和一個詞“黃金比例”有關。希望你們課后能從生活中找到更多的“比例”,發現更多的數學知識,到那時,相信你們能夠更深刻的感受到數學知識在我們的生活中真的是無時不在,無處不在。
比例的知識在我們生活中的應用非常廣泛,法國著名的建筑物埃菲爾鐵塔,希臘雕像斷臂維納斯,還有閃爍的五角星,這些事物之所以能給我們美感,是因為它們的構造都和一個詞“黃金比例”有關。希望你們課后能從生活中找到更多的“比例”,發現更多的數學知識,到那時,相信你們能夠更深刻的感受到數學知識在我們的生活中真的是無時不在,無處不在。
《比例的意義》教學設計篇三
教科書第48~50頁例1、例2,課堂活動及練習十一1,2題。
1.理解比例的意義,認識比例各部分的名稱。
2.讓學生經歷探討兩內項之積等于兩外項之積的過程,使之更好理解并掌握比例的基本性質。并能運用比例的意義和比例的基本性質,判斷兩個比能否組成比例,會組比例。
3.培養學生自主參與的意識、主動探究的精神;培養學生進行初步的觀察、分析、比較、判斷、概括的能力,發展學生思維,能夠在解決問題的過程中體驗到學習數學的愉悅。
理解比例的意義和基本性質。
應用比例的意義和基本性質判斷兩個比能否組成比例,并能正確地組成比例。
課件,撲克牌10張(2~10以及a),圓規一個。
教學過程
(1)一輛汽車4時行160 km,路程和時間的比是多少?這個比表示什么?
(2)求下面各比的比值,你發現了什么?
12∶16 34∶18 4.5∶2.7 10∶6
教師:同學們發現4.5∶2.7和10∶6的結果是一樣的,說明了什么?(這兩個比相等。)這兩個比你能用等號連接起來嗎?(能。)請同學們用等號把這兩個比用等號連接起來。
這節課我們在比的知識基礎上,進一步學習新知識。
揭示課題--比例的意義和基本性質。板書:比例的意義和基本性質
課件出示例1:兩組同學同時在操場探討竹竿長與影子長之間的規律。列表如下:
竹竿長26
影子長39
教師:觀察上表,你能寫出多少個有意義的比?并求出比值。把這些比都寫出來。
學生討論并寫出比,完成后抽幾個學生的作業在視頻展示臺上展示,教師選幾個有代表性的比在黑板上板書。
教師:觀察這些比,哪些能用等號連接?把能用等號連接的比用等號連接起來。
學生口答,教師板書:3∶2=9∶6,6∶2=9∶332=96,62=93
教師:這些都是比例。你能用自己的語言說一說什么是比例嗎?
引導學生用自己的語言歸納比例的意義。(板書:比例的意義)
教師:2∶9和3∶6能組成比例嗎?你是怎么知道的?
指導學生說出判斷兩個比能不能組成比例,要看他們的比值是否相等。再判斷2∶5和80∶200能否組成比例?并說明理由。
組織并指導學生完成書上第50頁的課堂活動。
教師:在一個比例里,有四個數,這四個數分別叫什么名字?同學們看看書就明白了。
指導學生看書后匯報。
教師:請同學們分別找出3∶2=9∶6和6/2=9/3的內項和外項。
學生找出后,隨學生的匯報教師板書:
要求學生找出剛才自己說的幾個比例的內項和外項,然后引導學生分析歸納出:在比例里,靠近等號的兩個數是內項,剩下的兩個數是外項;如果寫成分數形式,那么可以用交叉的方法找出比例的內項和外項。
教師:前面我們已經探究發現了比例的一個秘密,就是組成比例的兩個比的比值相等,比例還有一個秘密,你們愿意去尋找嗎?(愿意)你們任意找一個比例,把它們的內項和外項分別乘起來,又可以發現什么?
學生初步發現兩個內項的積等于兩個外項的積后,教師提醒學生:是不是每個比例都有這個規律,多找幾個比例試一試,如果把這個比例寫成分數形式,它是不是也有這樣的規律呢?
教師:同學們通過多個比例的探究,發現它們都有這個規律。你能用你自己的語言歸納這個規律嗎?
指導學生歸納后,教師板書:在比例里,兩個內項的積等于兩個外項的積,并且告訴學生,這就是比例的基本性質。
教師:用比例的基本性質,也可以判斷兩個比能不能組成比例。請同學們用比例的基本性質判斷一下,0.4∶25能否和1.2∶75組成比例?為什么?
學生討論后回答:因為0.475=251.2,所以0.4∶25和1.2∶75能組成比例。
(1)說一說比和比例有什么區別。
討論后指名說:比是表示兩個數相除的關系,有兩項;比例是一個等式,表示兩個比相等的關系,有四項。
(2)在6∶5=30∶25這個比例中,外項是()和(),內項是()和()。根據比例的基本性質可以寫成()()=()()。
(3)下面的四個數可以組成比例嗎?把組成的比例寫出來(能組幾個就組幾個)。2,3,4和6
先讓學生總結本課所學內容,談感想說收獲,教師再進行全課總結。
(1)指導學生完成練習十一的第1題。
要求:第(1)小題用比的意義來判斷,第(2)小題用比例的基本性質判斷,第(3),(4)小題學生自由選擇方法判斷。
(2)學生獨立完成練習十一的第2題,教師訂正。
《比例的意義》教學設計篇四
教學內容:p32~34 比例的意義和基本性質
教學目的:1、使同學理解比例的意義和基本性質,能正確判斷兩個比是否能組成比例。
2、通過引導探究、概括歸納、討論、合作學習,培養同學籠統概括能力。
3、使同學初步感知事物間是相互聯系、變化發展的。
教學重點;比例的意義和基本性質
教學難點:應用比的基本性質判段兩個數能否成比例,并正確的組成比例。
教學過程:
1、請同學們回憶一下上學期我們學過的比的知識,誰能說說什么叫做比?并舉例說明什么是比的前項、后項和比值。
教師把同學舉的例子板書出來,并注明比的各局部的名稱。
2、我們知道了比的前后項相除所得的商叫做比值,你們會求比值嗎?教師板書出下面幾組比,讓同學求出它們的比值。
12:16 : 4.5:2.7 10:6
同學求出各比的比值后,再提問:哪兩個比的比值相等?
(4.5:2.7的比值和10:6的比值相等。)
教師說明:因為這兩個比的比值相等,所以這兩個比也是相等的,我們把它們用等號連起來。(板書:4.5:2.7=10:6)像這樣表示兩個比相等的式子叫做什么呢?這就是這節課我們要學習的內容。(板書課題:比例的意義)
1、教學比例的意義。
(1)出示p32例1。
每面國旗的長和寬的比分別是多少?指名分別算出一面國旗長和寬的比。
5: 2.4:1.6 60:40 15:10
每面國旗長和寬的比值有什么關系?(都相等)
5: =2.4:1.6 60:40=15:10 2.4:1.6=60:40
象這樣表示兩個比相等的式子叫做比例。
比例也可以寫成: = =
(2)我們也學過不同的兩個量也可以組成一個比,如:
一輛汽車第一次2小時行駛80千米,第二次5小時行駛200千米。列表如下:
時間(時) 2 5
路程(千米) 80 200
指名同學讀題。
教師:這道題涉和到時間和路程兩個量的關系,我們用表格把它們表示出來。表格的第一欄表示時間,單位“時”,第二欄表示路程,單位“千米”。 這輛汽車第一次2小時行駛多少千米?第二次5小時行駛多少千米?(邊問 邊填寫表格。)
“你能根據這個表,分別寫出第一、二次所行駛的路程和時間的比嗎?”教師根據同學的回答,板書:
第一次所行駛的路程和時間的比是80:2
第二次所行駛的路程和時間的比是200:5
讓同學算出這兩個比的比值。指名同學回答,教師板書:80:2=40,200:5=40。讓同學觀察這兩個比的比值。再提問:你們發現了什么?”(這兩個比的比值都是40,這兩個比相等。)
教師說明:因為這兩個比相等,所以可以把它們用等號連起來組成比例。(板書:80:2=200:5)像這樣表示兩個比相等的式子叫做比例。
指著比例式4.5:2.7=10:6提問: “誰能說說什么叫做比例?”引導同學觀察是表示兩個比相等。然后板書:表示兩個比相等的式子叫做比例。并讓同學齊讀一遍。
“從比例的意義我們可以知道,比例是由幾個比組成的?這兩個比必需具備什么條件?因此判斷兩個比能不能組成比例,關鍵是看什么?假如不能一眼看出兩個比是不是相等的,怎么辦?”
根據同學的回答,教師小結:通過上面的學習,我們知道了比例是由兩個相等的比組成的。在判斷兩個比能不能組成比例時,關鍵是看這兩個比是不是相等。假如不能一眼看出兩個比是不是相等,可以先分別把兩個比化簡以后再看。例如判斷10:12和35: 42這兩個比能不能組成比例,先要算出 10: 12= ,35: 42= ,所以 10:12=35:42。(以上舉例邊說邊板書。)
(3)比較“比”和“比例”兩個概念。
教師:上學期我們學習了“比”,現在又知道了“比例”的意義,那么“比”和“比例”有什么區別呢?
引導同學從意義上、項數上進行對比,最后教師歸納:比是表示兩個數相除,有兩項;比例是一個等式,表示兩個比相等,有四項。
(4)鞏固練習。
①用手勢判斷下面卡片上的兩個比能不能組成比例。(能,就用張開拇指和食指表示;不能就用兩手的食指交叉表示。)
6:3和12:6 35:7和45:9 20:5和16:8 0.8:0.4和0.3:0.6
同學判斷后,指名說出判斷的根據。
②做p33“做一做”。
讓同學看書,不抄題,直接把能組成比例的兩個比寫在練習本上,教師邊巡視邊批改,對做得不對的,讓他們說說是怎樣做的,看看自身做得對不對。
③給出2、3、4、6四個數,讓同學組成不同的比例(不要求舉全)。
④p36練習六的第1~2題。
對于能組成比例的四個數,把能組成的比例寫出來。組成的比例只要能成立就可以。
第4小題,給出的四個數都是分數,在寫比例式時,也要讓同學寫成分數形式。
《比例的意義》教學設計篇五
1、使學生理解正比例的意義,能根據正比例的意義判斷是不是成正比例。
2、培養學生概括能力和分析判斷能力。
3、培養學生用發展變化的觀點來分析問題的能力。
成正比例的量的特征及其判斷方法。
理解兩個變量之間的比例關系,發現思考兩種相關聯的量的變化規律。
啟發引導法
自主探究法
課件
一、定向導學(5分)
1、已知路程和時間,求速度
2、已知總價和數量,求單價
3、已知工作總量和工作時間,求工作效率
4、導入課題
今天我們來學習成正比例的量。
5、出示學習目標
1、理解正比例的意義。
2、能根據正比例的意義判斷兩種量是不是成正比例。
二、自主學習(8分)
自學內容:書上45頁例1
自學時間:8分鐘
自學方法:讀書法、自學法
自學思考:
1、舉例說明什么是成正比例的量,成正比例的量要具備幾個條件?
2、正比例關系式是什么?
(1)兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩個量就叫做成正比例的量,它們的關系叫做正比例關系。例如底面積一定,體積和高成正比例。
(2)構成正比例關系的兩種量,必須具備三個條件:一是必須是兩種相關聯的量,二是一種量變化另一種量也隨著變化,三是比值(商)一定
(3)如果用x和y表示兩種相關聯的量,用k表示它們的比值(一定),正比例關系怎樣用字母表示出來?
y/x=k(一定)
(4)不計算,根據圖像判斷,如果杯中水的高度是7厘米,那么水的體積是175立方米?225立方厘米的水有9厘米。
2、歸類提升
引導學生小結成正比例的量的意義和關系式。
三、合作交流(5分)
第46頁正比例圖像
1、正比例圖像是什么樣子的?
2、完成46頁做一做
3、各組的b1同學上臺講解
四、質疑探究(5分)
1、第49頁第1題
2、第49頁第2題
3、你還有什么問題?
五、小結檢測(8分)
1、什么是正比例關系?如何判斷是不是正比例關系?
2、檢測
1、49頁第3題。
六、堂清作業(9分)
練習九頁第4、5題。
板書設計:
成正比例的量
兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩個量就叫做成正比例的量,它們的關系叫做正比例關系。
關系式:
y/x=k
(一定)
《比例的意義》教學設計篇六
1、使學生在理解比例的基本性質的`基礎上認識比例的“項”以及”“內項”和“外項”。
2、理解并掌握比例的基本性質,會應用比例的基本性質判斷兩個比能否組成比例。
(一)復習鋪墊
1.上節課我們已經認識了比例?誰能說說什么是比例?
2、哪組中的兩個比可以組成比例?把組成的比例寫出來.
(1)3:5 18:30
(2)0.4:0.2 1.8:0.9
(3)2:89:27
提問:下面每組中兩個比能組成比例嗎?為什么?
(二)探究新知
1、把左邊的三角形按比例縮小后得到右邊的三角形。(單位:厘米)
(1)提問:你能根據圖中的數據寫出比例嗎?
(2)兩個三角形底的比和高的比相等嗎?3:62:4
兩個三角形高的比和底的比相等嗎?2:43:6
每個三角形底和高的比相等嗎?3:26:4
每個三角形高和底的比相等嗎?2:34:6
2、(1)學生自學:組成比例的四個數,就是比例的各個部分,那么比例的各部分的名稱是什么呢?請同學門自學課本第43頁。
(2)學生匯報:組成比例的四個數叫做比例的項.兩端的兩項叫做比例的外項,中間的兩項叫做比例的內項.(板書)
3:6=2:4
外項內項內項外項
(2)學生交流:你能說出其他三個比例的內項和外項是多少嗎?
(3)寫成分數形式的比例,并說一說各比例外項和內項在哪里?
(4)比較:比例和比有什么區別?
3、(1)要求:觀察黑板上的四個比例式,你有什么發現?(學生小組討論、交流)
(2)要求:計算上面每一個比例中的外項積和內項積,并討論它們存在什么關系?
以3∶6=2∶4為例,指名來說明.
內項積是:6×2=12
外項積是:3×4=12
6×2=3×4
4、再寫出一些比例,看看是否有同樣的規律。學生自己任選兩三個比例,計算出它的外項積和內項積.
5、如果用字母表示比例的四個項,即a:b=c:d,那么這個規律可以表示為()
6、教師明確:在比例里,兩個外項的積等于兩個內項的積,這叫做比例的基本性質。
板書課題:比例的基本性質
7、思考:如果把比例寫成分數形式,等號兩端的分子和分母分別交叉相乘的積有什么關系?為什么?
教師板書:交叉相乘積相等
8、提問:學習了比例的基本性質有什么用呢?
1、完成試一試
2、比和比例除了在意義和各部分名稱方面不同,你認為它們在什么方面還有什么區別?
3、完成練習十/1、2、3、4
4、判斷:比例的兩個外項的積是1,兩個內項一定互為為倒數。()
5、根據4×9=12×3,寫出比例式。
這節課你學習了哪些知識?