作為一名教職工,總歸要編寫教案,教案是教學藍圖,可以有效提高教學效率。寫教案的時候需要注意什么呢?有哪些格式需要注意呢?以下是小編為大家收集的教案范文,僅供參考,大家一起來看看吧。
分數除法教案人教版篇一
1.使學生掌握列方程解答“已知一個數的幾分之幾是多少,求這個數”的應用題的解答方法
2.培養學生分析問題、解答問題能力,以及認真審題的良好習慣.
找準單位“1”,找出等量聯系.
能正確的分析數量聯系并列方程解答應用題.
一、復習、引新
(一)確定單位“1”
1.鉛筆的支數是鋼筆的 倍.
2.楊樹的棵數是柳樹的 .
3.白兔只數的 是黑兔.
4.紅花朵數的 相當于黃花.
(二)小營村全村有耕地75公頃,其中棉田占 .小營村的棉田有多少公頃?
1.找出題目中的已知條件和未知條件.
2.分析題意并列式解答.
二、講授新課
(一)將復習題改成例1
例1.小營村有棉田45公頃,占全村耕地面積的 ,全村的耕地面積是多少公頃?
1.找出已知條件和問題
2.抓住哪句話來分析?
3.引導學生用線段圖來表示題目中的數量聯系.
4.比較復習題與例1的相同點與不同點.
5.教師提問:
(1)棉田面積占全村耕地面積的 ,誰是單位“1”?
(2)如果要求全村耕地面積的 是多少,應該怎樣列式?(全村耕地面積× ).
(3)全村耕地面積的 就是誰的面積?(就是棉田的面積)
解:設全村耕地面積是 公頃.
答:全村耕地面積是75公頃.
6.教師提問:應怎樣進行檢驗?你還能用別的方法來解答嗎?
(1)把 代入原方程,左邊 ,右邊是45,左邊=右邊,所以 是原方程的解.)
(公頃)
(根據棉田面積和 是已知的,全村耕地面積是未知的,根據分數除法意義,已知兩個因數的積與其中一個因數,求另一個因數應該用除法計算.)
(二)練習
果園里有桃樹560棵,占果樹總數的 .果園里一共有果樹多少棵?
1.找出已知條件和問題
2.畫圖并分析數量聯系
3.列式解答
解1:設一共有果樹 棵.
答:一共有果樹640棵.
解1: (棵)
(三)教學例2
例2.一條褲子75元,是一件上衣價格的 .一件上衣多少錢?
1.教師提問
(1)題中的已知條件和問題有什么?
(2)有幾個量相比較,應把哪個數量作為單位“1”?
2.引導學生說出線段圖應怎樣畫?上衣價格的
3.分析:上衣價格的 就是誰的價錢?(是褲子的價錢)誰能找出數量間相等的聯系?(上衣的單價× =褲子的單價)
4.讓學生獨立用列方程的方法解答,并加強個別輔導.
解:設一件上衣 元.
答:一件上衣 元.
5.怎樣直接用算術方法求出上衣的單價?
(元)
6.比較一下算術解法和方程解法的相同之處與不同之處.
相同點:都要根據數量間相等的聯系式來列式.
不同點:算術解法是按照分數除法的意義直接列出除法算式;而方程解法則要先設未知數,再按照等量聯系式列出方程.
三、鞏固練習
(一)一個修路隊修一條路,第一天修了全長 ,正好是160米,這條路全長是多少米?
提問:誰是單位“1”?數量間相等的聯系式是什么?怎樣列式?
(米)
(二)幼兒園買來 千克水果糖,是買來的牛奶糖的 ,買來牛奶糖多少千克?
(三)新風小學去年植樹320棵,相當于今年植樹棵數的 .今年、去年共植樹多少棵?
1.演示:分數除法應用題
2.列式解答
四、課堂小結
這節課我們學習了列方程解答分數除法應用題的方法.這類題有什么特點?解題時分幾步?
五、課后作業
(一)一桶水,用去它的 ,正好是15千克.這桶水重多少千克?
(二)王新買了一本書和一枝鋼筆.書的價格是4元,正好是鋼筆價格的 .鋼筆價格是多少元?
(三)一種小汽車的最快速度是每小時行140千米,相當于一種超音速飛機速度的 .這種超音速飛機每小時飛行多少千米?
分數除法教案人教版篇二
1、通過觀察、探究,理解分數與除法的關系,并會用分數表示兩個數相除的商。
2、經歷分數與除法的關系的探究過程,明確可以用分數表示兩個數相除的商
3、通過觀察、探究,滲透辯證思想,激發學生學習興趣。
教學重點:
掌握分數與除法的關系,會用分數表示兩個數相除的商。
多媒體課件,圓形紙片,剪刀
一、創設情境,導入新課,
師:同學們過生日都要吃生日蛋糕,喜歡吃嗎?(生:喜歡)
1、師:今天老師就帶來了8個小蛋糕把8個小蛋糕平均分給4個人吃,每人分得多少個?
怎么列式?生:8÷4=2(個)
2、師:把8個小蛋糕變成1個大蛋糕把1個大蛋糕平均分給4個人吃,每人分得多少個?
怎么列式?生:1÷4=
二、動手操作,探索新知
1、探索一個物體平均分,體會分數與除法的關系。
(1)師:每人分得多少個?請同學們利用這張白色的圓形紙片,折一折,分一分,看看到底是多少個?生動手折紙,思考
生:把1個蛋糕看作單位“1”,把它平均分給4個人,也就是平均分成4份,每人分得其中的一份,也就是這1個蛋糕的1/4,就是1/4個蛋糕
(2)師:把1個蛋糕平均分給3個人,每人分得多少多少個?怎么列式?
生獨立思考并回答。
全班交流,明確:求每人分得多少個,要把1個蛋糕平均分成3份,用除法計算;而把“1”平均分成3份,表示這樣一份的數,可以用分數()來表示。所以1÷3=()(個)
2、探索多個物體平均分,體會分數與除法的關系。
師:把3個蛋糕平均分給4個人,每人分得多少個?
師:怎樣分公平?每人分得多少個?下面,利用你手中的學具3張圓形紙片,小組合作,分一分,剪一剪。
(1)充分交流、展示學生的想法與做法(可能出現以下幾種情況)。
方法一:一張一張分,把每個蛋糕分別平均分成4份,共12份,每人分到3份,3個(1/4)張拼在一起得到(3/4)個。
方法二:三個蛋糕摞在一起,平均分成4份,每人分到1份,1份中有3個(1/4)個,拼在一起得到(3/4)個。
(2)演示:(突出方法二中3個的1/4就是1個的3/4,深化3/4的意義)無論哪一種方法我們都得到:3個蛋糕平均分給4個人,每人分到的就是3/4個蛋糕。即:3÷4=()(個)(板書)
(3)在這里,3/4就有兩層含義:既表示1個的蛋糕的3/4,又表示3個蛋糕的1/4
(4)師:同學們真了不起,老師還想考考你們:如果把5個蛋糕平均分給7個人,每人分得多少個呢?你能想象一下分的過程嗎?好好想一想,并和同學交流一下。
學生匯報,明確:5個蛋糕的1/7就是1個蛋糕的5/7,即:5÷7=5/7(個)(板書)(5)師:剛才我們是分的蛋糕,現在我們來分分繩子。把3根繩子平均分成5份,每份是多少根?怎么列式?學生思考后回答:3÷5=3/5(根)(課件演示)
3、總結概括分數與除法之間的關系。
1÷4=(個)3÷4=(個)
5÷7=(個)3÷5=(個)
師:觀察黑板上的這些算式,你發現了什么?
三、觀察算式,概括分數與除法的關系。
(1)請同學們觀察這兩組算式,你發現分數與除法有什么關系?請觀察思考一下,并把你的發現和同學交流一下。
(2)生匯報:我發現除法算式中的被除數相當于分數的分子,除法算式中的除數相當于分數的分母,除法算式的除號相當于分數的分數線。師補充:除法算式的商相當于分數的分數值。
師強調:相當于
(3)師:請每個同學看著這些算式說一說分數與除法的關系。
(師板書):被除數÷除數=被除數/除數
提問:我們能不能反過來說,分數的分子相當于什么?誰來說一說?
生:分數的分子相當于除法算式中的被除數,分數的分母相當于除數,分數線相當于除號。
(4)師:如果用a表示被除數,b表示除數,二者的關系可以用字母表示成:a÷b=a/b
討論:用字母表示分數與除法的關系,b是否可以是任何數?為什么?補充板書(b≠0)師板書:a÷b=a/b(b≠0)提問:為什么b≠0?(因為除數不能為0,所以b不能為0。)
師:分數與除法有著如此緊密的聯系,那么它們之間有沒有區別呢?(學生說不出可以引導)
小組議一議再全班交流,明確:分數是一種數,也可以表示兩數相除;而除法是一種運算。
三、練習鞏固應用
1、你能很快說出這些算式的商嗎?3÷8=5÷9=7÷13=4÷7=40÷56=12÷61=
2、把1千克葡萄干平均裝在2個袋子里,每袋重多少千克?怎么列式?
把1千克葡萄干平均裝在3個袋子里,每袋重多少千克?怎么列式?
把2千克葡萄干平均裝在3個袋子里,每袋重多少千克?怎么列式?
四、全課小結今天這堂課你有什么收獲?還有什么問題嗎?
分數除法教案人教版篇三
教學要求:
1、使學生認識分數除法應用題的特點,能根據應用題的特點理解解題思路和解題方法,學會解答已知一個數的幾分之幾是多少求這個數的應用題。
2、進一步培養學生自主探索問題解決的能力和分析、推理和判斷等思維能力,提高解答應用題的能力。
教學重難點:
分數除法應用題的特點及解題思路和解題方法。
教學過程:
一:復習
1、根據條件說出把哪個數量看作單位1。
(1)棉田的面積占全村耕地面積的2/5。
(2)小軍的體重是爸爸體重的3/8。
(3)故事書的本數占圖書總數的1/3。
(4)汽車速度相當于飛機速度的1/5。
2、找單位1,并說出數量關系式。
(1)白兔的只數占總只數的2/5。
(2)甲數正好是乙數的3/8。
(3)男生人數的1/3恰好和女生同樣多。
3、一個兒童體重35千克,他體內所含水分占體重的4/5,他體內的水分有多少千克?
集體訂正時,讓學生分析數量關系,說出把哪個數量看作單位1,并說出解答這個問題的數量關系式,即:體重4/5=體內水分的重量。同學們都能正確分析和解答分數乘法應用題,分數除法應用題又如何解答呢?今天這節課我們就一起來研究。(板書課題:分數除法應用題)
二、新授
1、教學例1。一個兒童體內所含的水分有28千克,占體重的4/5。這個兒童體重有多少千克?
(1)指名讀題,說出已知條件和問題。
(2)共同畫圖表示題中的條件和問題。
(3)分析數量關系式
提問:根據水份占體重的4/5,可以得到什么數量關系式?
學生回答后,教師說明:例1和復習題的第二個已知條件相同,因此單位1相同,數量關系式也相同,都是把體重看作單位1,數量關系式是:體重4/5=體內水分的重量。
根據學生的回答,把線段圖進一步完善。
提問:根據題目的條件,我們已經找到了這一題的數量關系式:體重4/5=體內水分的重量。現在已知體內水分的重量,要求兒童體重有多少千克,可以用什么方法解答?(引導學生說出用方程解答。)
讓學生試列方程,并說出方程表示的意義。
讓學生把方程解完,并寫上答案。
出示教材的檢驗,提問:要檢驗兒童的體重是不是正確,應該怎樣做?(用求出的體重乘4/5,看看是不是等于水分的千克數。)
2、比較。
提問:我們再把例1與復習題比較,看看這兩題有什么相同的地方,有什么不同的地方?
根據學生的回答,幫助學生整理出:
(1)看作單位1的數量相同,數量關系式相同。
(2)復習題單位1的量已知,用乘法計算;
例1單位1的量未知,可以用方程解答。
(3)因為它們的數量關系式相同,所以這兩種題目的解題思路是一致的,都是先找出把哪個數量看作單位1,根據單位1是已知還是未知,再確定是用乘法解還是方程解。
三、鞏固練習
1、做書p34做一做
要求學生先按照題目中的想說出想的過程,說出數量關系式,再列方程解答。訂正時要說一說是按照什么來列方程的。
2、做練習九第1題。
先讓學生找出把哪個數量看作單位1,說出數量關系式,再列方程解答。
四、小測:(略)
五、小結:這節課我們研究了什么問題?解答分數應用題的關鍵是什么?單位1已知用什么方法解答?未知呢?
六、布置作業
練習九第2題
教后反思:學生在已學過的分數乘法應用題的基礎上,能找出關鍵句,并根據關鍵句說出相對的數量關系式。為孩子創造做數學的機會,通過讓學生積極參與知識的形成過程,讓學生運用已有的知識經驗,從不同的角度,用不同方法獲取新知識,在不同程度上都得到發展。使學生不但知其然,還知其所以然。同時又使學生的觀察力、想象力、思維能力和創新能力得到培養和發展,在學會的過程中達到會學的目的。
再根據題目的條件判斷單位1的量,是已知的就乘法計算;單位1的量是未知的就用方程來解答;并學會了怎樣驗算。教學中不僅要重視知識的最終獲得,更要重視學生獲取知識的探究過程。結論僅是一個終結點,而探究結論、揭示結論的過程則是由無數個點組成的線、面、體,在探究的過程中,只有讓學生動手做數學,學生很可能獲得超出結論自身的價值的若干倍的數學知識。
小測:列出數量關系式,并列式解答。
1、六年一班有三好學生9人,正好占全班人數的1/5,全班有多少人?(用方程解)
2、一瓶油吃了3/5,正好是300克,這瓶油重多少克?(用方程)
小測:列出數量關系式,并列式解答。
1、六年一班有三好學生9人,正好占全班人數的1/5,全班有多少人?(用方程解)
2、一瓶油吃了3/5,正好是300克,這瓶油重多少克?(用方程)
分數除法教案人教版篇四
1、結合具體情境,掌握分數四則混合運算的順序,能正確進行計算。
2、能運用所學知識解決簡單的實際問題,提高綜合解題的能力。
3、培養學生認真審題、準確計算的好習慣。
重點:掌握分數四則混合運算的順序。
難點:正確計算分數四則混合運算。
投影儀。
一、導入
1、筆算下面各題。
24÷4+16×5-37 46+50×[(900-90)÷9]
提問:整數四則混合運算的順序是什么?
2、計算下面各題。
二、教學實施
(5)分析運算順序。
提問:這兩個算式里分別含有幾級運算?應該先算什么,再算什么?
指名讓學生回答,并說明運算順序。全班同學各自在練習本上計算,做完后集體訂正。
2、鞏固練習。
完成教材第33頁“做一做”。
學生說明運算順序。
3、變式練習。
學生可以先討論怎樣計算,再明確順序進行計算。
老師說明:一般情況下,在分數、小數混合的式子里,通常把小數化成分數進行計算。
三、課堂作業新設計
1、填空。
四、思維訓練參考答案
思維訓練
1.d 2.略
教材習題
教材第33頁做一做
板書設計
分數四則混合運算
運算順序
(1)不含括號的分數混合運算的運算順序:在一個分數混合運算算式里,如果只
含有同一級運算,按照從左到右的順序計算;如果含有兩級運算,先算第二
級運算,再算第一級運算。
(2)有括號的分數混合運算的運算順序:在一個分數混合運算的算式里,如果既
有小括號又有中括號,要先算小括號里面的,再算中括號里面的。
備課參考教材與學情分析
例3以吃藥片為題材,通過解決問題,引出涉及分數除法的混合運算,使學生看到已經掌握的混合運算順序,同樣適用于分數運算。例3下面的“做一做”是需要用到分數乘除混合運算解決的實際問題。
1、加強意義理解,加強分數除法與整數除法、分數乘法的聯系,加強復習,使學生利用已有知識進行自主探索。
2、通過解決問題,理解分數混合運算的順序。
教學例3時,可以先復習以前學過的四則混合運算順序。出示例題后,可以讓學生先說出已知條件與問題,再說說自己解決這個問題的思路。可以從問題入手想,也可以從條件出發思考。列出綜合算式后,讓學生說說運算順序,再進行計算。
3、注重直觀操作,滲透數學的思想和學習方法。
直觀操作——主要體現在計算方法的理解過程中。在例題教學和習題練習中,關注學困生的情況,需要多次演示,強化數量關系的理解(已知一個數的幾分之幾是多少,求這個數)。