
函數在
上不單調,則的
取值范圍是__________.
函數在
上不單調,則的
取值范圍是__________.
導數和函數的單調性的關系:
(1)若f′(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數,f′(x)>0的解集與定義域的交集的對應區間為增區間;
(2)若f′(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數,f′(x)<0的解集與定義域的交集的對應區間為減區間。
函數的單調性與導數的關系的知識擴展
1.導數和函數的單調性的關系:
(1)若f′(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數,f′(x)>0的解集與定義域的交集的對應區間為增區間;
(2)若f′(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數,f′(x)<0的解集與定義域的交集的對應區間為減區間。
2.利用導數求解多項式函數單調性的一般步驟:
①確定f(x)的定義域;
②計算導數f′(x);
③求出f′(x)=0的根;
④用f′(x)=0的根將f(x)的定義域分成若干個區間,列表考察這若干個區間內f′(x)的符號,進而確定f(x)的單調區間:f′(x)>0,則f(x)在對應區間上是增函數,對應區間為增區間;f′(x)<0,則f(x)在對應區間上是減函數,對應區間為減區間。
查看答案
單次付費有效 3.99 元
用于查看答案,單次有效 19.99元
包月VIP 9.99 元
用于查看答案,包月VIP無限次 49.99元