解決絕對值問題
主要包括化簡、求值、方程、不等式、函數等題,基本思路是:把含絕對值的問題轉化為不含絕對值的問題。具體轉化方法有:
①分類討論法:根據絕對值符號中的數或式子的正、零、負分情況去掉絕對值。
②零點分段討論法:適用于含一個字母的多個絕對值的情況。
③兩邊平方法:適用于兩邊非負的方程或不等式。
④幾何意義法:適用于有明顯幾何意義的情況。
因式分解
根據項數選擇方法和按照一般步驟是順利進行因式分解的重要技巧。因式分解的一般步驟是:
提取公因式
選擇用公式
十字相乘法
分組分解法
拆項添項法
配方法
利用完全平方公式把一個式子或部分化為完全平方式就是配方法,它是數學中的重要方法和技巧。配方法的主要根據有:
換元法
解某些復雜的特型方程要用到“換元法”。換元法解方程的一般步驟是:
設元→換元→解元→還元
待定系數法
待定系數法是在已知對象形式的條件下求對象的一種方法。適用于求點的坐標、函數解析式、曲線方程等重要問題的解決。其解題步驟是:
①設 ②列 ③解 ④寫
復雜代數等式
復雜代數等式型條件的使用技巧:左邊化零,右邊變形。
①因式分解型:
(-----)(----)=0 兩種情況為或型
②配成平方型:
(----)2+(----)2=0 兩種情況為且型
數學中兩個最偉大的解題思路
(1)求值的思路列欲求值字母的方程或方程組
(2)求取值范圍的思路列欲求范圍字母的不等式或不等式組
化簡二次根式
基本思路是:把√m化成完全平方式。即:
觀察法
1代數式求值
方法有:
(1)直接代入法
(2)化簡代入法
(3)適當變形法(和積代入法)
注意:當求值的代數式是字母的“對稱式”時,通??梢曰癁樽帜?ldquo;和與積”的形式,從而用“和積代入法”求值。
解含參方程
方程中除過未知數以外,含有的其它字母叫參數,這種方程叫含參方程。解含參方程一般要用‘分類討論法’,其原則是:
(1)按照類型求解
(2)根據需要討論
(3)分類寫出結論
恒相等成立的有用條件
(1)ax+b=0對于任意x都成立關于x的方程ax+b=0有無數個解a=0且b=0。
(2)ax2+bx+c=0對于任意x都成立關于x的方程ax2+bx+c=0有無數解a=0、b=0、c=0。
恒不等成立的條件
由一元二次不等式解集為R的有關結論容易得到下列恒不等成立的條件:
平移規律
圖像的平移規律是研究復雜函數的重要方法。平移規律是:
圖像法
討論函數性質的重要方法是圖像法——看圖像、得性質。
定義域 圖像在X軸上對應的部分
值 域 圖像在Y軸上對應的部分
單調性
從左向右看,連續上升的一段在X軸上對應的區間是增區間;從左向右看,連續下降的一段在X軸上對應的區間是減區間。
最 值 圖像最高點處有最大值,圖像最低點處有最小值
奇偶性 關于Y軸對稱是偶函數,關于原點對稱是奇函數
函數、方程、不等式簡的重要關系
方程的根
函數圖像與x軸交點橫坐標
不等式解集端點
一元二次方程的解法
一元二次不等式可以用因式分解轉化為二元一次不等式組去解,但比較復雜;它的簡便的實用解法是根據“三個二次”間的關系,利用二次函數的圖像去解。具體步驟如下:
二次化為正
判別且求根
畫出示意圖
解集橫軸中
一元二次方程根的討論
一元二次方程根的符號問題或m型問題可以利用根的判別式和根與系數的關系來解決,但根的一般問題、特別是區間根的問題要根據“三個二次”間的關系,利用二次函數的圖像來解決。“圖像法”解決一元二次方程根的問題的一般思路是:
題意
二次函數圖像
不等式組
不等式組包括:a的符號;△的情況;對稱軸的位置;區間端點函數值的符號。